Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Old Dominion University

Bioelectrics Publications

Discipline
Keyword
Publication Year

Articles 1 - 30 of 218

Full-Text Articles in Life Sciences

Synergistic Effects Of Nanosecond Pulsed Plasma And Electric Field On Inactivation Of Pancreatic Cancer Cells In Vitro, Edwin A. Oshin, Zobia Minhas, Ruben M. L. Colunga Biancatelli, John D. Catravas, Richard Heller, Siqi Guo, Chunqi Jiang Jan 2024

Synergistic Effects Of Nanosecond Pulsed Plasma And Electric Field On Inactivation Of Pancreatic Cancer Cells In Vitro, Edwin A. Oshin, Zobia Minhas, Ruben M. L. Colunga Biancatelli, John D. Catravas, Richard Heller, Siqi Guo, Chunqi Jiang

Bioelectrics Publications

Nanosecond pulsed atmospheric pressure plasma jets (ns-APPJs) produce reactive plasma species, including charged particles and reactive oxygen and nitrogen species (RONS), which can induce oxidative stress in biological cells. Nanosecond pulsed electric field (nsPEF) has also been found to cause permeabilization of cell membranes and induce apoptosis or cell death. Combining the treatment of ns-APPJ and nsPEF may enhance the effectiveness of cancer cell inactivation with only moderate doses of both treatments. Employing ns-APPJ powered by 9 kV, 200 ns pulses at 2 kHz and 60-nsPEF of 50 kV/cm at 1 Hz, the synergistic effects on pancreatic cancer cells (Pan02) …


Control Of The Electroporation Efficiency Of Nanosecond Pulses By Swinging The Electric Field Vector Direction, Vitalii Kim, Iurii Semenov, Allen S. Kiester, Mark A. Keppler, Bennett L. Ibey, Joel N. Bixler, Ruben M. L. Colunga Biancatelli, Andrei G. Pakhomov Jun 2023

Control Of The Electroporation Efficiency Of Nanosecond Pulses By Swinging The Electric Field Vector Direction, Vitalii Kim, Iurii Semenov, Allen S. Kiester, Mark A. Keppler, Bennett L. Ibey, Joel N. Bixler, Ruben M. L. Colunga Biancatelli, Andrei G. Pakhomov

Bioelectrics Publications

Reversing the pulse polarity, i.e., changing the electric field direction by 180°, inhibits electroporation and electrostimulation by nanosecond electric pulses (nsEPs). This feature, known as “bipolar cancellation,” enables selective remote targeting with nsEPs and reduces the neuromuscular side effects of ablation therapies. We analyzed the biophysical mechanisms and measured how cancellation weakens and is replaced by facilitation when nsEPs are applied from different directions at angles from 0 to 180°. Monolayers of endothelial cells were electroporated by a train of five pulses (600 ns) or five paired pulses (600 + 600 ns) applied at 1 Hz or 833 kHz. Reversing …


Covid-19 Vaccination And Alcohol Consumption: Justification Of Risks, Pavel A. Solopov Jan 2023

Covid-19 Vaccination And Alcohol Consumption: Justification Of Risks, Pavel A. Solopov

Bioelectrics Publications

Since the beginning of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, pharmaceutical companies and research institutions have been actively working to develop vaccines, and the mass roll-out of vaccinations against COVID-19 began in January 2021. At the same time, during lockdowns, the consumption of alcoholic beverages increased. During the peak of vaccination, consumption remained at high levels around the world, despite the gradual relaxation of quarantine restrictions. Two of the popular queries on search engines were whether it is safe to drink alcohol after vaccination and whether this will affect the effectiveness of vaccines. Over the past two …


Gene Expression Under Combined Hypoxia And Acidosis In Chondrosarcoma, Michael Stacey, Kostika Vangjeli, Christopher Osgood Jan 2023

Gene Expression Under Combined Hypoxia And Acidosis In Chondrosarcoma, Michael Stacey, Kostika Vangjeli, Christopher Osgood

Bioelectrics Publications

Chondrosarcomas are the second most common cause of bone cancer and are removed surgically with wide margins. On recurrence, they are resistant to chemo and radiation therapy and new treatment options are critically required. This tumor type produces hyaline cartilage, a cartilage normally formed under hypoxic and acidic environment due to lack of vasculature in cartilage. Paradoxically, chondrosarcomas arise in the well vascularized, oxygen rich environment of the bone. Hypoxia and acidosis are two stressors where the cellular effects are typically reported separately even though cells experience combined effects of hypoxia and acidosis. Given the mechanistic links between hypoxia and …


Identification Of Proteins Involved In Cell Membrane Permeabilization By Nanosecond Electric Pulses (Nsep), Giedre Silkuniene, Uma Mangalanathan, Alessandra Rossi, Peter A. Mollica, Andrei G. Pakhomov, Olga N. Pakhomova Jan 2023

Identification Of Proteins Involved In Cell Membrane Permeabilization By Nanosecond Electric Pulses (Nsep), Giedre Silkuniene, Uma Mangalanathan, Alessandra Rossi, Peter A. Mollica, Andrei G. Pakhomov, Olga N. Pakhomova

Bioelectrics Publications

The study was aimed at identifying endogenous proteins which assist or impede the permeabilized state in the cell membrane disrupted by nsEP (20 or 40 pulses, 300 ns width, 7 kV/cm). We employed a LentiArray CRISPR library to generate knockouts (KOs) of 316 genes encoding for membrane proteins in U937 human monocytes stably expressing Cas9 nuclease. The extent of membrane permeabilization by nsEP was measured by the uptake of Yo-Pro-1 (YP) dye and compared to sham-exposed KOs and control cells transduced with a non-targeting (scrambled) gRNA. Only two KOs, for SCNN1A and CLCA1 genes, showed a statistically significant reduction in …


Modification Of The Tumor Microenvironment Enhances Anti-Pd-1 Immunotherapy In Metastatic Melanoma, Guilan Shi, Megan Scott, Cathryn G. Mangiamele, Richard Heller Nov 2022

Modification Of The Tumor Microenvironment Enhances Anti-Pd-1 Immunotherapy In Metastatic Melanoma, Guilan Shi, Megan Scott, Cathryn G. Mangiamele, Richard Heller

Bioelectrics Publications

Resistance to checkpoint-blockade treatments is a challenge in the clinic. Both primary and acquired resistance have become major obstacles, greatly limiting the long-lasting effects and wide application of blockade therapy. Many patients with metastatic melanoma eventually require further therapy. The absence of T-cell infiltration to the tumor site is a well-accepted contributor limiting immune checkpoint inhibitor efficacy. In this study, we combined intratumoral injection of plasmid IL-12 with electrotransfer and anti-PD-1 in metastatic B16F10 melanoma tumor model to increase tumor-infiltrating lymphocytes and improve therapeutic efficacy. We showed that effective anti-tumor responses required a subset of tumor-infiltrating CD8+ and CD4 …


Hsp90 Inhibitors Modulate Sars-Cov-2 Spike Protein Subunit 1-Induced Human Pulmonary Microvascular Endothelial Activation And Barrier Dysfunction, Ruben Manuel Luciano Colunga Biancatelli, Pavel Solopov, Betsy W. Gregory, Yara Khodour, John D. Catravas Mar 2022

Hsp90 Inhibitors Modulate Sars-Cov-2 Spike Protein Subunit 1-Induced Human Pulmonary Microvascular Endothelial Activation And Barrier Dysfunction, Ruben Manuel Luciano Colunga Biancatelli, Pavel Solopov, Betsy W. Gregory, Yara Khodour, John D. Catravas

Bioelectrics Publications

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused more than 5 million deaths worldwide. Multiple reports indicate that the endothelium is involved during SARS-Cov-2-related disease (COVID-19). Indeed, COVID-19 patients display increased thrombophilia with arterial and venous embolism and lung microcapillary thrombotic disease as major determinants of deaths. The pathophysiology of endothelial dysfunction in COVID-19 is not completely understood. We have investigated the role of subunit 1 of the SARS-CoV-2 spike protein (S1SP) in eliciting endothelial barrier dysfunction, characterized dose and time relationships, and tested the hypothesis that heat shock protein 90 (HSP90) inhibitors would prevent and repair such injury. S1SP …


Pulmonary Capillary Recruitment And Distention In Mammalian Lungs: Species Similarities, David Langleben, Benjamin D. Fox, Stylianos E. Orfanos, Michele Giovinazzo, John D. Catravas Jan 2022

Pulmonary Capillary Recruitment And Distention In Mammalian Lungs: Species Similarities, David Langleben, Benjamin D. Fox, Stylianos E. Orfanos, Michele Giovinazzo, John D. Catravas

Bioelectrics Publications

Pulmonary arterial pressure rises minimally during exercise. The pulmonary microcirculation accommodates increasing blood flow via recruitment of pulmonary capillaries and, at higher flows, by distention of already perfused capillaries. The flow transition range between recruitment and distention has not been studied or compared across mammalian species, including humans. We hypothesised that the range would be similar. Functional pulmonary capillary surface area (FCSA) can be estimated using validated metabolic techniques. We reviewed data from previous studies in three mammalian species (perfused rabbit lungs and dog lung lobes, and exercising humans) and generated blood flow-FCSA curves over a range of flows. We …


Electroporation And Cell Killing By Milli- To Nanosecond Pulses And Avoiding Neuromuscular Stimulation In Cancer Ablation, Emily Gudvangen, Vitalii Kim, Vitalij Novickij, Federico Battista, Andrei G. Pakhomov Jan 2022

Electroporation And Cell Killing By Milli- To Nanosecond Pulses And Avoiding Neuromuscular Stimulation In Cancer Ablation, Emily Gudvangen, Vitalii Kim, Vitalij Novickij, Federico Battista, Andrei G. Pakhomov

Bioelectrics Publications

Ablation therapies aim at eradication of tumors with minimal impact on surrounding healthy tissues. Conventional pulsed electric field (PEF) treatments cause pain and muscle contractions far beyond the ablation area. The ongoing quest is to identify PEF parameters efficient at ablation but not at stimulation. We measured electroporation and cell killing thresholds for 150 ns–1 ms PEF, uni- and bipolar, delivered in 10- to 300-pulse trains at up to 1 MHz rates. Monolayers of murine colon carcinoma cells exposed to PEF were stained with YO-PRO-1 dye to detect electroporation. In 2–4 h, dead cells were labeled with propidium. Electroporation and …


In Vivo Metabolic Analysis Of The Anticancer Effects Of Plasma-Activated Saline In Three Tumor Animal Models, Miao Qi, Dehui Xu, Shuai Wang, Bing Li, Sansan Peng, Qiaosong Li, Hao Zhang, Runze Fan, Hai-Lan Chen, Michael G. Kong Jan 2022

In Vivo Metabolic Analysis Of The Anticancer Effects Of Plasma-Activated Saline In Three Tumor Animal Models, Miao Qi, Dehui Xu, Shuai Wang, Bing Li, Sansan Peng, Qiaosong Li, Hao Zhang, Runze Fan, Hai-Lan Chen, Michael G. Kong

Bioelectrics Publications

In recent years, the emerging technology of cold atmospheric pressure plasma (CAP) has grown rapidly along with the many medical applications of cold plasma (e.g., cancer, skin disease, tissue repair, etc.). Plasma-activated liquids (e.g., culture media, water, or normal saline, previously exposed to plasma) are being studied as cancer treatments, and due to their advantages, many researchers prefer plasma-activated liquids as an alternative to CAP in the treatment of cancer. In this study, we showed that plasma-activated-saline (PAS) treatment significantly inhibited tumor growth, as compared with saline, in melanoma, and a low-pH environment had little effect on tumor growth in …


Plasmonic-Based Biosensor For The Early Diagnosis Of Prostate Cancer, Thakshila Liyanage, Bayan Alharbi, Linh Quan, Aurora Esquela-Kerscher, Gymama Slaughter Jan 2022

Plasmonic-Based Biosensor For The Early Diagnosis Of Prostate Cancer, Thakshila Liyanage, Bayan Alharbi, Linh Quan, Aurora Esquela-Kerscher, Gymama Slaughter

Bioelectrics Publications

A tapered optical fiber (TOF) plasmonic biosensor was fabricated and used for the sensitive detection of a panel of microRNAs (miRNAs) in human serum obtained from noncancer and prostate cancer (PCa) patients. Oncogenic and tumor suppressor miRNAs let7a, let-7c, miR-200b, miR-141, and miR-21 were tested as predictive cancer biomarkers since multianalyte detection minimizes false-positive and false-negative rates and establishes a strong foundation for early PCa diagnosis. The biosensing platform integrates metallic gold triangular nanoprisms (AuTNPs) laminated on the TOF to excite surface plasmon waves in the supporting metallic layer and enhance the evanescent mode of the fiber surface. …


Alkaline Plasma-Activated Water (Paw) As An Innovative Therapeutic Avenue For Cancer Treatment, Bolun Pang, Zhijie Liu, Sitao Wang, Yuting Gao, Miao Qi, Dehui Xu, Renwu Zhou, Dingxin Liu, Michael G. Kong Jan 2022

Alkaline Plasma-Activated Water (Paw) As An Innovative Therapeutic Avenue For Cancer Treatment, Bolun Pang, Zhijie Liu, Sitao Wang, Yuting Gao, Miao Qi, Dehui Xu, Renwu Zhou, Dingxin Liu, Michael G. Kong

Bioelectrics Publications

Plasma-activated water (PAW) is considered to be an effective anticancer agent due to the diverse aqueous reactive oxygen and nitrogen species (RONS: ROS and RNS), but the drawback of low dose and short duration of RONS in acidified PAW limits their clinical application. Herein, this Letter presents an innovative therapeutic avenue for cancer treatment with highly-effective alkaline PAW prepared by air surface plasma. This anticancer alkaline formulation is comprised of a rich mixture of highly chemical RONS and exhibited a prolonged half-life compared to acidified PAW. The H2O2, NO2-, and ONOO-/O2 …


Connexin Hemichannel Activation By S-Nitrosoglutathione Synergizes Strongly With Photodynamic Therapy Potentiating Anti-Tumor Bystander Killing, Chiara Nardin, Chiara Peres, Sabrina Putti, Tiziana Orsini, Claudia Colussi, Flavia Mazzarda, Marcello Raspa, Ferdinando Scavizzi, Anna Maria Salvatore, Francesco Chiani, Abraham Tettey-Matey, Yuanyuan Kuang, Guang Yang, Mauricio A. Retamal, Fabio Mammano Jan 2021

Connexin Hemichannel Activation By S-Nitrosoglutathione Synergizes Strongly With Photodynamic Therapy Potentiating Anti-Tumor Bystander Killing, Chiara Nardin, Chiara Peres, Sabrina Putti, Tiziana Orsini, Claudia Colussi, Flavia Mazzarda, Marcello Raspa, Ferdinando Scavizzi, Anna Maria Salvatore, Francesco Chiani, Abraham Tettey-Matey, Yuanyuan Kuang, Guang Yang, Mauricio A. Retamal, Fabio Mammano

Bioelectrics Publications

In this study, we used B16-F10 cells grown in the dorsal skinfold chamber (DSC) preparation that allowed us to gain optical access to the processes triggered by photodynamic therapy (PDT). Partial irradiation of a photosensitized melanoma triggered cell death in non-irradiated tumor cells. Multiphoton intravital microscopy with genetically encoded fluorescence indicators revealed that bystander cell death was mediated by paracrine signaling due to adenosine triphosphate (ATP) release from connexin (Cx) hemichannels (HCs). Intercellular calcium (Ca2+) waves propagated from irradiated to bystander cells promoting intracellular Ca2+ transfer from the endoplasmic reticulum (ER) to mitochondria and rapid activation of …


The Role Of Reactive Oxygen Species In The Immunity Induced By Nano-Pulse Stimulation, Siqi Guo, Niculina I. Burcus, Megan Scott, Yu Jing, Iurii Semenov Jan 2021

The Role Of Reactive Oxygen Species In The Immunity Induced By Nano-Pulse Stimulation, Siqi Guo, Niculina I. Burcus, Megan Scott, Yu Jing, Iurii Semenov

Bioelectrics Publications

Reactive oxygen species (ROS) are byproducts of tumor cells treated with Nano-Pulse Stimulation (NPS). Recently, ROS have been suggested as a contributing factor in immunogenic cell death and T cell-mediated immunity. This research further investigated the role of NPS induced ROS in antitumor immunity. ROS production in 4T1-luc breast cancer cells was characterized using three detection reagents, namely, Amplex Red, MitoSox Red, and Dihydroethidium. The efficiency of ROS quenching was evaluated in the presence or absence of ROS scavengers and/or antioxidants. The immunogenicity of NPS treated tumor cells was assessed by ex vivo dendritic cell activation, in vivo vaccination assay …


Effect Of He Plasma Jet Versus Surface Plasma On The Metabolites Of Acute Myeloid Leukemia Cells, Dehui Xu, Ning Ning, Yujing Xu, Wenjie Xia, Hai-Lan Chen, Michael G. Kong Jan 2021

Effect Of He Plasma Jet Versus Surface Plasma On The Metabolites Of Acute Myeloid Leukemia Cells, Dehui Xu, Ning Ning, Yujing Xu, Wenjie Xia, Hai-Lan Chen, Michael G. Kong

Bioelectrics Publications

Cold atmospheric plasma, including plasma jet and surface plasma, can promote the apoptosis of cancer cells without causing significant damage to surrounding normal cells, which was hopeful to be applied to the clinical cancer therapy. However, experimental plasma devices used directly to clinical experiments has challenges in technology and methods, especially the difference in killing tumor cells efficiency of these two common plasma sources. Therefore, it is great necessity to explore the differences in treating tumors between different plasma sources. This paper achieved good killing efficiency by using two kinds of cold atmospheric plasma generating devices, namely plasma jet and …


Stobe Photography Mapping Of Cell Membrane Potential With Nanosecond Resolution, Allen S. Kiester, Bennett L. Ibey, Zachary N. Coker, Andrei G. Pakhomov, Joel N. Bixler Jan 2021

Stobe Photography Mapping Of Cell Membrane Potential With Nanosecond Resolution, Allen S. Kiester, Bennett L. Ibey, Zachary N. Coker, Andrei G. Pakhomov, Joel N. Bixler

Bioelectrics Publications

The ability to directly observe membrane potential charging dynamics across a full microscopic field of view is vital for understanding interactions between a biological system and a given electrical stimulus. Accurate empirical knowledge of cell membrane electrodynamics will enable validation of fundamental hypotheses posited by the single shell model, which includes the degree of voltage change across a membrane and cellular sensitivity to external electric field non-uniformity and directionality. To this end, we have developed a high-speed strobe microscopy system with a time resolution of ~ 6 ns that allows us to acquire time-sequential data for temporally repeatable events (non-injurious …


Modulation Of Ros In Nanosecond-Pulsed Plasma-Activated Media For Dosage-Dependent Cancer Cell Inactivation In Vitro, Chunqi Jiang, Esin Bengisu Sozer, Shutong Song, Nicola Lai, P. Thomas Vernier, Sigi Guo Nov 2020

Modulation Of Ros In Nanosecond-Pulsed Plasma-Activated Media For Dosage-Dependent Cancer Cell Inactivation In Vitro, Chunqi Jiang, Esin Bengisu Sozer, Shutong Song, Nicola Lai, P. Thomas Vernier, Sigi Guo

Bioelectrics Publications

Dosage control of reactive oxygen and nitrogen species (RONS) is critical to low-temperature plasma applications in cancer therapy. Production of RONS by atmospheric pressure, nonequilibrium plasmas in contact with liquid may be modulated via plasma conditions including plasma treatment time and pulse voltage and repetition frequency. In this study, a terephthalic acid-based probe was used to measure hydroxyl radicals [OHaq] in water exposed to plasma and to demonstrate that the OHag concentration increases linearly with treatment time. Fluorometric measurements of hydrogen peroxide concentration in plasma-activated water show a linear relationship between the H2O2 production …


Secretion Of Proteins And Antibody Fragments From Transiently Transfected Endothelial Progenitor Cells, Loree Heller, Reynald Thinard, Melanie Chevalier, Sezgi Arpag, Yu Jing, Ruth Greferath, Richard Heller, Claude Nicolau Jul 2020

Secretion Of Proteins And Antibody Fragments From Transiently Transfected Endothelial Progenitor Cells, Loree Heller, Reynald Thinard, Melanie Chevalier, Sezgi Arpag, Yu Jing, Ruth Greferath, Richard Heller, Claude Nicolau

Bioelectrics Publications

In neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, multiple sclerosis and amyotrophic lateral sclerosis, neuroinflammation can lead to blood-brain barrier (BBB) breakdown. After intravenous or intra-arterial injection into mice, endothelial progenitor cells (EPCs) home to the damaged BBB to promote neurovascular repair. Autologous EPCs transfected to express specific therapeutic proteins offer an innovative therapeutic option. Here, we demonstrate that EPC transfection by electroporation with plasmids encoding the reporter protein GFP or an anti-beta-amyloid antibody fragment (Fab) leads to secretion of each protein. We also demonstrate the secreted anti-beta-amyloid Fab protein functions in beta-amyloid aggregate solubilization.


Myeloid-Derived Suppressor Cells Infiltration In Non-Small-Cell Lung Cancer Tumor And Mage-A4 And Ny-Eso-1 Expression, Zhenbo Hou, Xiao Liang, Xinmei Wang, Ziqiang Zhou, Guilan Shi Jun 2020

Myeloid-Derived Suppressor Cells Infiltration In Non-Small-Cell Lung Cancer Tumor And Mage-A4 And Ny-Eso-1 Expression, Zhenbo Hou, Xiao Liang, Xinmei Wang, Ziqiang Zhou, Guilan Shi

Bioelectrics Publications

Cancer/testis antigens melanoma‑associated antigen 4 (MAGE‑A4) and New York esophageal squamous cell carcinoma‑1 (NY‑ESO‑1) are of clinical interest as biomarkers and present valuable targets for immunotherapy; however, they are poor prognostic markers in non‑small cell lung cancer (NSCLC). In addition, myeloid derived suppressor cells (MDSCs) are recognized as a key element in tumor escape and progression. The aim of the present study was to investigate the diagnostic and prognostic value of MAGE‑A4 and NY‑ESO‑1, and their association with MDSCs in NSCLC samples. The expression levels of MAGE‑A4 and NY‑ESO‑1, and the infiltration of MDSCs (CD33+), were analyzed by immunohistochemistry of …


Quercetin And Vitamin C: An Experimental, Synergistic Therapy For The Prevention And Treatment Of Sars-Cov-2 Related Disease (Covid-19), Ruben Manuel Luciano Colunga Biancatelli, Max Berrill, John D. Catravas, Paul Ellis Marik Jun 2020

Quercetin And Vitamin C: An Experimental, Synergistic Therapy For The Prevention And Treatment Of Sars-Cov-2 Related Disease (Covid-19), Ruben Manuel Luciano Colunga Biancatelli, Max Berrill, John D. Catravas, Paul Ellis Marik

Bioelectrics Publications

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) represents an emergent global threat which is straining worldwide healthcare capacity. As of May 27th, the disease caused by SARS-CoV-2 (COVID-19) has resulted in more than 340,000 deaths worldwide, with 100,000 deaths in the US alone. It is imperative to study and develop pharmacological treatments suitable for the prevention and treatment of COVID-19. Ascorbic acid is a crucial vitamin necessary for the correct functioning of the immune system. It plays a role in stress response and has shown promising results when administered to the critically ill. Quercetin is a well-known flavonoid whose antiviral properties …


Probing Nanoelectroporation And Resealing Of The Cell Membrane By The Entry Of Ca2+ And Ba2+ Ions, Wenfei Bo, Mantas Silkunas, Uma Mangalanathan, Vitalij Novickij, Maura Casciola, Iurii Semenov, Shu Xiao, Olga N. Pakhomova, Andrei G. Pakhomov May 2020

Probing Nanoelectroporation And Resealing Of The Cell Membrane By The Entry Of Ca2+ And Ba2+ Ions, Wenfei Bo, Mantas Silkunas, Uma Mangalanathan, Vitalij Novickij, Maura Casciola, Iurii Semenov, Shu Xiao, Olga N. Pakhomova, Andrei G. Pakhomov

Bioelectrics Publications

The principal bioeffect of the nanosecond pulsed electric field (nsPEF) is a lasting cell membrane permeabilization, which is often attributed to the formation of nanometer-sized pores. Such pores may be too small for detection by the uptake of fluorescent dyes. We tested if Ca2+, Cd2+, Zn2+, and Ba2+ ions can be used as nanoporation markers. Time-lapse imaging was performed in CHO, BPAE, and HEK cells loaded with Fluo-4, Calbryte, or Fluo-8 dyes. Ca2+ and Ba2+ did not change fluorescence in intact cells, whereas their entry after nsPEF increased fluorescence within <1 ms. The threshold for one 300-ns pulse was at 1.5–2 kV/cm, much lower than >7 …


Bone Morphogenic Proteins Are Immunoregulatory Cytokines Controlling Foxp3+ TReg Cells, Lauren M. Browning, Caroline Miller, Michal Kuczma, Maciej Pietrzak, Yu Jing, Grzegorz Rempala, Pawel Muranski, Leszek Ignatowicz, Piotr Kraj Jan 2020

Bone Morphogenic Proteins Are Immunoregulatory Cytokines Controlling Foxp3+ TReg Cells, Lauren M. Browning, Caroline Miller, Michal Kuczma, Maciej Pietrzak, Yu Jing, Grzegorz Rempala, Pawel Muranski, Leszek Ignatowicz, Piotr Kraj

Bioelectrics Publications

Bone morphogenic proteins (BMPs) are members of the transforming growth factor β (TGF-β) cytokine family promoting differentiation, homeostasis, and self-renewal of multiple tissues. We show that signaling through the bone morphogenic protein receptor 1α (BMPR1α) sustains expression of FOXP3 in Treg cells in peripheral lymphoid tissues. BMPR1α signaling promotes molecular circuits supporting acquisition and preservation of Treg cell phenotype and inhibiting differentiation of pro-inflammatory effector Th1/Th17 CD4+ T cell. Mechanistically, increased expression of KDM6B (JMJD3) histone demethylase, an antagonist of the polycomb repressive complex 2, underlies lineage-specific changes of T cell phenotypes associated with abrogation of BMPR1α signaling. …


Electropermeabilization Does Not Correlate With Plasma Membrane Lipid Oxidation, Olga Michel, Andrei G. Pakhomov, Maura Casciola, Jolanta Saczko, Julita Kulbacka, Olga N. Pakhomova Dec 2019

Electropermeabilization Does Not Correlate With Plasma Membrane Lipid Oxidation, Olga Michel, Andrei G. Pakhomov, Maura Casciola, Jolanta Saczko, Julita Kulbacka, Olga N. Pakhomova

Bioelectrics Publications

The permeabilized condition of the cell membrane after electroporation can last minutes but the underlying mechanisms remain elusive. Previous studies suggest that lipid peroxidation could be responsible for the lasting leaky state of the membrane. The present study aims to link oxidation within the plasma membrane of live cells to permeabilization by electric pulses. We have introduced a method for the detection of oxidation by ratiometric fluorescence measurements of BODIPY-C11 dye using total internal reflection fluorescence (TIRF) microscopy, limiting the signal to the cell membrane. CHO-K1 cells were cultured on glass coverslips coated with an electroconductive indium tin oxide (ITO) …


Multiple Cytosolic Dna Sensors Bind Plasmid Dna After Transfection, Nina Semenova, Masa Bosnjak, Katarina Znidar, Maja Cemazar, Loree Heller Nov 2019

Multiple Cytosolic Dna Sensors Bind Plasmid Dna After Transfection, Nina Semenova, Masa Bosnjak, Katarina Znidar, Maja Cemazar, Loree Heller

Bioelectrics Publications

Mammalian cells express a variety of nucleic acid sensors as one of the first lines of defense against infection. Despite extensive progress in the study of sensor signaling pathways during the last decade, the detailed mechanisms remain unclear. In our previous studies, we reported increased type I interferon expression and the upregulation of several proposed cytosolic DNA sensors after transfection of several tumor cell types with plasmid DNA (pDNA). In the present study, we sought to reveal the early events in the cytosolic sensing of this nucleic acid in a myoblast cell line. We demonstrated that DNA-dependent activator of interferon …


Label-Free Microrna Optical Biosensors, Meimei Lai, Gymama Slaughter Nov 2019

Label-Free Microrna Optical Biosensors, Meimei Lai, Gymama Slaughter

Bioelectrics Publications

MicroRNAs (miRNAs) play crucial roles in regulating gene expression. Many studies show that miRNAs have been linked to almost all kinds of disease. In addition, miRNAs are well preserved in a variety of specimens, thereby making them ideal biomarkers for biosensing applications when compared to traditional protein biomarkers. Conventional biosensors for miRNA require fluorescent labeling, which is complicated, time-consuming, laborious, costly, and exhibits low sensitivity. The detection of miRNA remains a big challenge due to their intrinsic properties such as small sizes, low abundance, and high sequence similarity. A label-free biosensor can simplify the assay and enable the direct detection …


Modulation Of Biological Responses To 2 Ns Electrical Stimuli By Field Reversal, Esin B. Sözer, P. Thomas Vernier Jun 2019

Modulation Of Biological Responses To 2 Ns Electrical Stimuli By Field Reversal, Esin B. Sözer, P. Thomas Vernier

Bioelectrics Publications

Nanosecond bipolar pulse cancellation, a recently discovered Phenomenon, is modulation of the effects of a unipolar electric pulse exposure by a second pulse of opposite polarity. This attenuation of biological response by reversal of the electric field direction has been reported with pulse durations from 60 ns to 900 ns for a wide range of endpoints, and it is not observed with conventional electroporation pulses of much longer duration (> 100 mu s) where pulses are additive regardless of polarity. The most plausible proposed mechanisms involve the field-driven migration of ions to and from the membrane interface (accelerated membrane discharge). …


Nanosecond Pulsed Electric Signals Can Affect Electrostatic Environment Of Protiens Below The Threshold Of Conformational Effects: The Case Study Of Sod1 With A Molecular Simulation Study, Elena Della Valle, Paolo Marracino, Olga Pakhomova, Micaela Liberti, Francesca Apollonio Jan 2019

Nanosecond Pulsed Electric Signals Can Affect Electrostatic Environment Of Protiens Below The Threshold Of Conformational Effects: The Case Study Of Sod1 With A Molecular Simulation Study, Elena Della Valle, Paolo Marracino, Olga Pakhomova, Micaela Liberti, Francesca Apollonio

Bioelectrics Publications

Electric fields can be a powerful tool to interact with enzymes or proteins, with an intriguing perspective to allow protein manipulation. Recently, researchers have focused the interest on intracellular enzyme modifications triggered by the application of nanosecond pulsed electric fields. These findings were also supported by theoretical predictions from molecular dynamics simulations focussing on significant variations in protein secondary structures. In this work, a theoretical study utilizing molecular dynamics simulations is proposed to explore effects of electric fields of high intensity and very short nanosecond duration applied to the superoxide dismutase (Cu/Zn-SOD or SOD-1), an important enzyme involved in the …


Mechanisms And Immunogenicity Of Nspef-Induced Cell Death In B16f10 Melanoma Tumors, Alessandra Rossi, Olga N. Pakhomova, Andrei G. Pakhomov, Samantha Weygandt, Anna A. Bulysheva, Len E. Murray, Peter A. Mollica, Claudia Muratori Jan 2019

Mechanisms And Immunogenicity Of Nspef-Induced Cell Death In B16f10 Melanoma Tumors, Alessandra Rossi, Olga N. Pakhomova, Andrei G. Pakhomov, Samantha Weygandt, Anna A. Bulysheva, Len E. Murray, Peter A. Mollica, Claudia Muratori

Bioelectrics Publications

Accumulating data indicates that some cancer treatments can restore anticancer immunosurveillance through the induction of tumor immunogenic cell death (ICD). Nanosecond pulsed electric fields (nsPEF) have been shown to efficiently ablate melanoma tumors. In this study we investigated the mechanisms and immunogenicity of nsPEF-induced cell death in B16F10 melanoma tumors. Our data show that in vitro nsPEF (20-200, 200-ns pulses, 7 kV/cm, 2 Hz) caused a rapid dose-dependent cell death which was not accompanied by caspase activation or PARP cleavage. The lack of nsPEF-induced apoptosis was confirmed in vivo in B16F10 tumors. NsPEF also failed to trigger ICD-linked responses such …


Nanosecond Pulsed Electric Fields Induce Endoplasmic Reticulum Stress Accompanied By Immunogenic Cell Death In Murine Models Of Lymphoma And Colorectal Cancer, Alessandra Rossi, Olga N. Pakhomova, Peter A. Mollica, Maura Casciola, Uma Mangalanathan, Andrei G. Pakhomov, Claudia Muratori Jan 2019

Nanosecond Pulsed Electric Fields Induce Endoplasmic Reticulum Stress Accompanied By Immunogenic Cell Death In Murine Models Of Lymphoma And Colorectal Cancer, Alessandra Rossi, Olga N. Pakhomova, Peter A. Mollica, Maura Casciola, Uma Mangalanathan, Andrei G. Pakhomov, Claudia Muratori

Bioelectrics Publications

Depending on the initiating stimulus, cancer cell death can be immunogenic or non-immunogenic. Inducers of immunogenic cell death (ICD) rely on endoplasmic reticulum (ER) stress for the trafficking of danger signals such as calreticulin (CRT) and ATP. We found that nanosecond pulsed electric fields (nsPEF), an emerging new modality for tumor ablation, cause the activation of the ER-resident stress sensor PERK in both CT-26 colon carcinoma and EL-4 lymphoma cells. PERK activation correlates with sustained CRT exposure on the cell plasma membrane and apoptosis induction in both nsPEF-treated cell lines. Our results show that, in CT-26 cells, the activity of …


Selective Distant Electrostimulation By Synchronized Bipolar Nanosecond Pulses, Elena C. Gianulis, Maura Casciola, Carol Zhou, Enbo Yang, Shu Xiao, Andrei G. Pakhomov Jan 2019

Selective Distant Electrostimulation By Synchronized Bipolar Nanosecond Pulses, Elena C. Gianulis, Maura Casciola, Carol Zhou, Enbo Yang, Shu Xiao, Andrei G. Pakhomov

Bioelectrics Publications

A unique aspect of electrostimulation (ES) with nanosecond electric pulses (nsEP) is the inhibition of effects when the polarity is reversed. This bipolar cancellation feature makes bipolar nsEP less efficient at biostimulation than unipolar nsEP. We propose to minimize stimulation near pulse-delivering electrodes by applying bipolar nsEP, whereas the superposition of two phase-shifted bipolar nsEP from two independent sources yields a biologically-effective unipolar pulse remotely. This is accomplished by electrical compensation of all nsEP phases except the first one, resulting in the restoration of stimulation efficiency due to cancellation of bipolar cancellation (CANCAN-ES). We experimentally proved the CANCAN-ES paradigm by …