Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 33

Full-Text Articles in Life Sciences

Hsp90 Inhibitors Modulate Sars-Cov-2 Spike Protein Subunit 1-Induced Human Pulmonary Microvascular Endothelial Activation And Barrier Dysfunction, Ruben Manuel Luciano Colunga Biancatelli, Pavel Solopov, Betsy W. Gregory, Yara Khodour, John D. Catravas Mar 2022

Hsp90 Inhibitors Modulate Sars-Cov-2 Spike Protein Subunit 1-Induced Human Pulmonary Microvascular Endothelial Activation And Barrier Dysfunction, Ruben Manuel Luciano Colunga Biancatelli, Pavel Solopov, Betsy W. Gregory, Yara Khodour, John D. Catravas

Bioelectrics Publications

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused more than 5 million deaths worldwide. Multiple reports indicate that the endothelium is involved during SARS-Cov-2-related disease (COVID-19). Indeed, COVID-19 patients display increased thrombophilia with arterial and venous embolism and lung microcapillary thrombotic disease as major determinants of deaths. The pathophysiology of endothelial dysfunction in COVID-19 is not completely understood. We have investigated the role of subunit 1 of the SARS-CoV-2 spike protein (S1SP) in eliciting endothelial barrier dysfunction, characterized dose and time relationships, and tested the hypothesis that heat shock protein 90 (HSP90) inhibitors would prevent and repair such injury. S1SP …


Stobe Photography Mapping Of Cell Membrane Potential With Nanosecond Resolution, Allen S. Kiester, Bennett L. Ibey, Zachary N. Coker, Andrei G. Pakhomov, Joel N. Bixler Jan 2021

Stobe Photography Mapping Of Cell Membrane Potential With Nanosecond Resolution, Allen S. Kiester, Bennett L. Ibey, Zachary N. Coker, Andrei G. Pakhomov, Joel N. Bixler

Bioelectrics Publications

The ability to directly observe membrane potential charging dynamics across a full microscopic field of view is vital for understanding interactions between a biological system and a given electrical stimulus. Accurate empirical knowledge of cell membrane electrodynamics will enable validation of fundamental hypotheses posited by the single shell model, which includes the degree of voltage change across a membrane and cellular sensitivity to external electric field non-uniformity and directionality. To this end, we have developed a high-speed strobe microscopy system with a time resolution of ~ 6 ns that allows us to acquire time-sequential data for temporally repeatable events (non-injurious …


Mechanisms And Immunogenicity Of Nspef-Induced Cell Death In B16f10 Melanoma Tumors, Alessandra Rossi, Olga N. Pakhomova, Andrei G. Pakhomov, Samantha Weygandt, Anna A. Bulysheva, Len E. Murray, Peter A. Mollica, Claudia Muratori Jan 2019

Mechanisms And Immunogenicity Of Nspef-Induced Cell Death In B16f10 Melanoma Tumors, Alessandra Rossi, Olga N. Pakhomova, Andrei G. Pakhomov, Samantha Weygandt, Anna A. Bulysheva, Len E. Murray, Peter A. Mollica, Claudia Muratori

Bioelectrics Publications

Accumulating data indicates that some cancer treatments can restore anticancer immunosurveillance through the induction of tumor immunogenic cell death (ICD). Nanosecond pulsed electric fields (nsPEF) have been shown to efficiently ablate melanoma tumors. In this study we investigated the mechanisms and immunogenicity of nsPEF-induced cell death in B16F10 melanoma tumors. Our data show that in vitro nsPEF (20-200, 200-ns pulses, 7 kV/cm, 2 Hz) caused a rapid dose-dependent cell death which was not accompanied by caspase activation or PARP cleavage. The lack of nsPEF-induced apoptosis was confirmed in vivo in B16F10 tumors. NsPEF also failed to trigger ICD-linked responses such …


Nanosecond Pulsed Electric Fields Induce Endoplasmic Reticulum Stress Accompanied By Immunogenic Cell Death In Murine Models Of Lymphoma And Colorectal Cancer, Alessandra Rossi, Olga N. Pakhomova, Peter A. Mollica, Maura Casciola, Uma Mangalanathan, Andrei G. Pakhomov, Claudia Muratori Jan 2019

Nanosecond Pulsed Electric Fields Induce Endoplasmic Reticulum Stress Accompanied By Immunogenic Cell Death In Murine Models Of Lymphoma And Colorectal Cancer, Alessandra Rossi, Olga N. Pakhomova, Peter A. Mollica, Maura Casciola, Uma Mangalanathan, Andrei G. Pakhomov, Claudia Muratori

Bioelectrics Publications

Depending on the initiating stimulus, cancer cell death can be immunogenic or non-immunogenic. Inducers of immunogenic cell death (ICD) rely on endoplasmic reticulum (ER) stress for the trafficking of danger signals such as calreticulin (CRT) and ATP. We found that nanosecond pulsed electric fields (nsPEF), an emerging new modality for tumor ablation, cause the activation of the ER-resident stress sensor PERK in both CT-26 colon carcinoma and EL-4 lymphoma cells. PERK activation correlates with sustained CRT exposure on the cell plasma membrane and apoptosis induction in both nsPEF-treated cell lines. Our results show that, in CT-26 cells, the activity of …


Selective Distant Electrostimulation By Synchronized Bipolar Nanosecond Pulses, Elena C. Gianulis, Maura Casciola, Carol Zhou, Enbo Yang, Shu Xiao, Andrei G. Pakhomov Jan 2019

Selective Distant Electrostimulation By Synchronized Bipolar Nanosecond Pulses, Elena C. Gianulis, Maura Casciola, Carol Zhou, Enbo Yang, Shu Xiao, Andrei G. Pakhomov

Bioelectrics Publications

A unique aspect of electrostimulation (ES) with nanosecond electric pulses (nsEP) is the inhibition of effects when the polarity is reversed. This bipolar cancellation feature makes bipolar nsEP less efficient at biostimulation than unipolar nsEP. We propose to minimize stimulation near pulse-delivering electrodes by applying bipolar nsEP, whereas the superposition of two phase-shifted bipolar nsEP from two independent sources yields a biologically-effective unipolar pulse remotely. This is accomplished by electrical compensation of all nsEP phases except the first one, resulting in the restoration of stimulation efficiency due to cancellation of bipolar cancellation (CANCAN-ES). We experimentally proved the CANCAN-ES paradigm by …


Il-12 Gene Electrotransfer Triggers A Change In Immune Response Within Mouse Tumors, Guilan Shi, Chelsea Edelblute, Sezgi Arpag, Cathryn Lundberg, Richard Heller Dec 2018

Il-12 Gene Electrotransfer Triggers A Change In Immune Response Within Mouse Tumors, Guilan Shi, Chelsea Edelblute, Sezgi Arpag, Cathryn Lundberg, Richard Heller

Bioelectrics Publications

Metastatic melanoma is an aggressive skin cancer with a relatively low survival rate. Immune-based therapies have shown promise in the treatment of melanoma, but overall complete response rates are still low. Previous studies have demonstrated the potential of plasmid IL-12 (pIL-12) delivered by gene electrotransfer (GET) to be an effective immunotherapy for melanoma. However, events occurring in the tumor microenvironment following delivery have not been delineated. Therefore, utilizing a B16F10 mouse melanoma model, we evaluated changes in the tumor microenvironment following delivery of pIL-12 using different GET parameters or injection of plasmid alone. The results revealed a unique immune cell …


Emerging Roles Of The Membrane Potential: Action Beyond The Action Potential, Lina Abdul Kadir, Michael Stacey, Richard Barrett-Jolley Nov 2018

Emerging Roles Of The Membrane Potential: Action Beyond The Action Potential, Lina Abdul Kadir, Michael Stacey, Richard Barrett-Jolley

Bioelectrics Publications

Whilst the phenomenon of an electrical resting membrane potential (RMP) is a central tenet of biology, it is nearly always discussed as a phenomenon that facilitates the propagation of action potentials in excitable tissue, muscle, and nerve. However, as ion channel research shifts beyond these tissues, it became clear that the RMP is a feature of virtually all cells studied. The RMP is maintained by the cell's compliment of ion channels. Transcriptome sequencing is increasingly revealing that equally rich compliments of ion channels exist in both excitable and non-excitable tissue. In this review, we discuss a range of critical roles …


Voltage Effects On Muscarinic Acetylcholine Receptor-Mediated Contractions Of Airway Smooth Muscle, Iurii Semenov, Robert Brenner Sep 2018

Voltage Effects On Muscarinic Acetylcholine Receptor-Mediated Contractions Of Airway Smooth Muscle, Iurii Semenov, Robert Brenner

Bioelectrics Publications

Studies have shown that the activity of muscarinic receptors and their affinity to agonists are sensitive to membrane potential. It was reported that in airway smooth muscle (ASM) depolarization evoked by high K+ solution increases contractility through direct effects on M3 muscarinic receptors. In this study, we assessed the physiological relevance of voltage sensitivity of muscarinic receptors on ASM contractility. Our findings reveal that depolarization by high K+ solution induces contraction in intact mouse trachea predominantly through activation of acetylcholine release from embedded nerves, and to a lesser extent by direct effects on M3 receptors. We therefore devised …


Moderate Heat Application Enhances The Efficacy Of Nanosecond Pulse Stimulation For The Treatment Of Squamous Cell Carcinoma, Chelsea M. Edelblute, Sigi Guo, Embo Yang, Chunqi Jiang, Karl Schoenbach, Richard Heller Sep 2018

Moderate Heat Application Enhances The Efficacy Of Nanosecond Pulse Stimulation For The Treatment Of Squamous Cell Carcinoma, Chelsea M. Edelblute, Sigi Guo, Embo Yang, Chunqi Jiang, Karl Schoenbach, Richard Heller

Bioelectrics Publications

Nanosecond pulse stimulation as a tumor ablation therapy has been studied for the treatment of various carcinomas in animal models and has shown a significant survival benefit. In the current study, we found that moderate heating at 43°C for 2 minutes significantly enhanced in vitro nanosecond pulse stimulation-induced cell death of KLN205 murine squamous cell carcinoma cells by 2.43-fold at 600 V and by 2.32-fold at 900 V, as evidenced by propidium iodide uptake. Furthermore, the ablation zone in KLN205 cells placed in a 3-dimensional cell-culture model and pulsed at a voltage of 900 V at 43°C was 3 times …


Mechanism Of Virus Inactivation By Cold Atmospheric-Pressure Plasma And Plasma-Activated Water, Li Guo, Ruobing Xu, Lu Gou, Zhichao Liu, Yiming Zhao, Dingxin Liu, Lei Zhang, Hailan Chen, Michael G. Kong Jun 2018

Mechanism Of Virus Inactivation By Cold Atmospheric-Pressure Plasma And Plasma-Activated Water, Li Guo, Ruobing Xu, Lu Gou, Zhichao Liu, Yiming Zhao, Dingxin Liu, Lei Zhang, Hailan Chen, Michael G. Kong

Bioelectrics Publications

ABSTRACT Viruses cause serious pathogenic contamination that severely affects the environment and human health. Cold atmospheric-pressure plasma efficiently inactivates pathogenic bacteria; however, the mechanism of virus inactivation by plasma is not fully understood. In this study, surface plasma in argon mixed with 1% air and plasma-activated water was used to treat water containing bacteriophages. Both agents efficiently inactivated bacteriophages T4, ϕ174, and MS2 in a time-dependent manner. Prolonged storage had marginal effects on the antiviral activity of plasma-activated water. DNA and protein analysis revealed that the reactive species generated by plasma damaged both nucleic acids and proteins, consistent with the …


Upregulation Of Dna Sensors In B16.F10 Melanoma Spheroid Cells After Electrotransfer Of Pdna, Katarina Znidar, Masa Bosnjak, Tanja Jesenko, Loree C. Heller, Maja Cemazar Jan 2018

Upregulation Of Dna Sensors In B16.F10 Melanoma Spheroid Cells After Electrotransfer Of Pdna, Katarina Znidar, Masa Bosnjak, Tanja Jesenko, Loree C. Heller, Maja Cemazar

Bioelectrics Publications

Increased expression of cytosolic DNA sensors, a category of pattern recognition receptor, after control plasmid DNA electrotransfer was observed in our previous studies on B16.F10 murine melanoma cells. This expression was correlated with the upregulation of proinflammatory cytokines and chemokines and was associated with cell death. Here, we expanded our research to include the influence of features of cells in a 3-dimensional environment, which better represents the tumors’ organization in vivo. Our results show that lower number of cells were transfected in spheroids compared to 2-dimensional cultures, that growth was delayed after electroporation alone or after electrotransfer of plasmid …


Excitation And Injury Of Adult Ventricular Cardiomyocytes By Nano- To Millisecond Electric Shocks, Iurii Semenov, Sergey Grigoryev, Johanna U. Neuber, Christian W. Zemlin, Olga N. Pakhomova, Maura Casciola, Andrei G. Pakhomov Jan 2018

Excitation And Injury Of Adult Ventricular Cardiomyocytes By Nano- To Millisecond Electric Shocks, Iurii Semenov, Sergey Grigoryev, Johanna U. Neuber, Christian W. Zemlin, Olga N. Pakhomova, Maura Casciola, Andrei G. Pakhomov

Bioelectrics Publications

Intense electric shocks of nanosecond (ns) duration can become a new modality for more efficient but safer defibrillation. We extended strength-duration curves for excitation of cardiomyocytes down to 200 ns, and compared electroporative damage by proportionally more intense shocks of different duration. Enzymatically isolated murine, rabbit, and swine adult ventricular cardiomyocytes (VCM) were loaded with a Ca2+ indicator Fluo-4 or Fluo-5N and subjected to shocks of increasing amplitude until a Ca2+ transient was optically detected. Then, the voltage was increased 5-fold, and the electric cell injury was quantified by the uptake of a membrane permeability marker dye, propidium …


Activation Of The Phospholipid Scramblase Tmem16f By Nanosecond Pulsed Electric Field (Nspef) Facilitates Its Diverse Cytophysiological Effects, Claudia Muratori, Andrei G. Pakhomov, Elena Gianulis, Jade Meads, Maura Casciola, Peter A. Mollica, Olga N. Pakhomova Oct 2017

Activation Of The Phospholipid Scramblase Tmem16f By Nanosecond Pulsed Electric Field (Nspef) Facilitates Its Diverse Cytophysiological Effects, Claudia Muratori, Andrei G. Pakhomov, Elena Gianulis, Jade Meads, Maura Casciola, Peter A. Mollica, Olga N. Pakhomova

Bioelectrics Publications

Nanosecond pulsed electric fields (nsPEF) are emerging as a novel modality for cell stimulation and tissue ablation. However, the downstream protein effectors responsible for nsPEF bioeffects remain to be established. Here we demonstrate that nsPEF activate TMEM16F (or Anoctamin 6), a protein functioning as a Ca2+-dependent phospholipid scramblase and Ca2+-activated chloride channel. Using confocal microscopy and patch clamp recordings, we investigated the relevance of TMEM16F activation for several bioeffects triggered by nsPEF, including phosphatidylserine (PS) externalization, nanopore-conducted currents, membrane blebbing, and cell death. In HEK 293 cells treated with a single 300-ns pulse of 25.5 kV/cm, …


A 'Tissue Model' To Study The Barrier Effects Of Living Tissues On The Reactive Species Generated By Surface Air Discharge, Tongtong He, Dingxin Liu, Han Xu, Zhichao Liu, Dehui Xu, Dong Li, Qiosong Li, Mingzhe Rong, Michael G. Kong May 2016

A 'Tissue Model' To Study The Barrier Effects Of Living Tissues On The Reactive Species Generated By Surface Air Discharge, Tongtong He, Dingxin Liu, Han Xu, Zhichao Liu, Dehui Xu, Dong Li, Qiosong Li, Mingzhe Rong, Michael G. Kong

Bioelectrics Publications

Gelatin gels are used as surrogates of human tissues to study their barrier effects on incoming reactive oxygen and nitrogen species (RONS) generated by surface air discharge. The penetration depth of nitrite into gelatin gel is measured in real time during plasma treatment, and the permeabilities of nitrite, nitrate, O3 and H2O2 through gelatin gel films are quantified by measuring their concentrations in the water underneath such films after plasma treatment. It is found that the penetration speed of nitrite increases linearly with the mass fraction of water in the gelatin gels, and the permeabilities of …


A Dielectric Rod Antenna For Picosecond Pulse Stimulation Of Neurological Tissue, Ross A. Petrella, Karl H. Schoenbach, Shu Xiao Jan 2016

A Dielectric Rod Antenna For Picosecond Pulse Stimulation Of Neurological Tissue, Ross A. Petrella, Karl H. Schoenbach, Shu Xiao

Bioelectrics Publications

A dielectrically loaded wideband rod antenna has been studied as a pulse delivery system to subcutaneous tissues. Simulation results applying 100-ps electrical pulse show that it allows us to generate a critical electric field for biological effects, such as brain stimulation, in the range of several centimeters. In order to reach the critical electric field for biological effects, which is similar to 20 kV/cm, at a depth of 2 cm, the input voltage needs to be 175 kV. The electric field spot size in the brain at this position is similar to 1 cm(2). Experimental studies in free space with …


Aqueous Reactive Species Induced By A Surface Air Discharge: Heterogenous Mass Transfer And Liquid Chemistry Pathways, D. X. Liu, Z. C. Liu, C. Chen, A. J. Yang, D. Li, M. Z. Rong, H. L. Chen, M. G. Kong Jan 2016

Aqueous Reactive Species Induced By A Surface Air Discharge: Heterogenous Mass Transfer And Liquid Chemistry Pathways, D. X. Liu, Z. C. Liu, C. Chen, A. J. Yang, D. Li, M. Z. Rong, H. L. Chen, M. G. Kong

Bioelectrics Publications

Plasma-liquid interaction is a critical area of plasma science and a knowledge bottleneck for many promising applications. In this paper, the interaction between a surface air discharge and its downstream sample of deionized water is studied with a system-level computational model, which has previously reached good agreement with experimental results. Our computational results reveal that the plasma-induced aqueous species are mainly H+, nitrate, nitrite, H2O2 and O-3. In addition, various short-lived aqueous species are also induced, regardless whether they are generated in the gas phase first. The production/loss pathways for aqueous species are quantified for an air gap width ranging …


Electrosensitization Assists Cell Ablation By Nanosecond Pulsed Electric Field In 3d Cultures, Claudia Muratori, Andrei G. Pakhomov, Shu Xiao, Olga N. Pakhomova Jan 2016

Electrosensitization Assists Cell Ablation By Nanosecond Pulsed Electric Field In 3d Cultures, Claudia Muratori, Andrei G. Pakhomov, Shu Xiao, Olga N. Pakhomova

Bioelectrics Publications

Previous studies reported a delayed increase of sensitivity to electroporation (termed "electrosensitization") in mammalian cells that had been subjected to electroporation. Electrosensitization facilitated membrane permeabilization and reduced survival in cell suspensions when the electric pulse treatments were split in fractions. The present study was aimed to visualize the effect of sensitization and establish its utility for cell ablation. We used KLN 205 squamous carcinoma cells embedded in an agarose gel and cell spheroids in Matrigel. A local ablation was created by a train of 200 to 600 of 300-ns pulses (50 Hz, 300-600 V) delivered by a two-needle probe with …


Electroporation Of Mammalian Cells By Nanosecond Electric Field Oscillations And It's Inhibition By The Electric Field Reversal, Elena C. Gianulis, Jimo Lee, Chunqi Jiang, Shu Xiao, Bennet L. Ibey, Andrei G. Pakhomov Jan 2015

Electroporation Of Mammalian Cells By Nanosecond Electric Field Oscillations And It's Inhibition By The Electric Field Reversal, Elena C. Gianulis, Jimo Lee, Chunqi Jiang, Shu Xiao, Bennet L. Ibey, Andrei G. Pakhomov

Bioelectrics Publications

The present study compared electroporation efficiency of bipolar and unipolar nanosecond electric field oscillations (NEFO). Bipolar NEFO was a damped sine wave with 140 ns first phase duration at 50% height; the peak amplitude of phases 2-4 decreased to 35%, 12%, and 7% of the first phase. This waveform was rectified to produce unipolar NEFO by cutting off phases 2 and 4. Membrane permeabilization was quantified in CHO and GH3 cells by uptake of a membrane integrity marker dye YO-PRO-1 (YP) and by the membrane conductance increase measured by patch clamp. For treatments with 1-20 unipolar NEFO, at 9.6-24 …


Calcium-Mediated Pore Expansion And Cell Death Following Nanoelectroporation, Olga N. Pakhomova, Betsy Gregory, Iurii Semenov, Andrei G. Pakhomov Jan 2014

Calcium-Mediated Pore Expansion And Cell Death Following Nanoelectroporation, Olga N. Pakhomova, Betsy Gregory, Iurii Semenov, Andrei G. Pakhomov

Bioelectrics Publications

Opening of long-lived pores in the cell membrane is the principal primary effect of intense, nanosecond pulsed electric field (nsPEF). Here we demonstrate that the evolution of pores, cell survival, the time and the mode of cell death (necrotic or apoptotic) are determined by the level of external Ca2+ after nsPEF. We also introduce a novel, minimally disruptive technique for nsEP exposure of adherent cells on indium tin oxide (ITO)-coated glass coverslips, which does not require cell detachment and enables fast exchanges of bath media. Increasing the Ca2+ level from the nominal 2–5 μM to 2 mM for …


Introduction To Fourth Special Issue On Electroporation-Based Technologies And Treatments, Damijan Miklavčič, Lluis M. Mir, P. Thomas Vernier Jan 2014

Introduction To Fourth Special Issue On Electroporation-Based Technologies And Treatments, Damijan Miklavčič, Lluis M. Mir, P. Thomas Vernier

Bioelectrics Publications

This fourth special electroporation-based technologies and treatments issue of the Journal of Membrane Biology contains reports on recent developments in the field of electroporation by participants in the 7th International Workshop and Postgraduate Course on electroporation based technologies and treatments (EBTT 2013) held in Ljubljana, November 17–23, 2013. The 65 participants included faculty members, invited lecturers, special guests, and young scientists, and students from 16 countries. In addition to lectures on the fundamentals, this year’s sessions included talks on microbial inactivation by pulsed electric fields, modeling of intracellular electroporation, electroporation in food processing, and electrotransfer-facilitated DNA vaccination.


Recruitment Of The Intracellular Ca2+ By Ultrashort Electric Stimuli: The Impact Of Pulse Duration, Iurii Semenov, Shu Xiao, Olga N. Pakhomova, Andrei G. Pakhomov Jan 2013

Recruitment Of The Intracellular Ca2+ By Ultrashort Electric Stimuli: The Impact Of Pulse Duration, Iurii Semenov, Shu Xiao, Olga N. Pakhomova, Andrei G. Pakhomov

Bioelectrics Publications

Nanosecond-duration electric stimuli are distinguished by the ability to permeabilize intracellular membranes and recruit Ca2+ from intracellular stores. We quantified this effect in non-excitable cells (CHO) using ratiometric Ca2+ imaging with Fura-2. In a Ca2+-free medium, 10-, 60-, and 300-ns stimuli evoked Ca2+ transients by mobilization of Ca2+ from the endoplasmic reticulum. With 2 mM external Ca2+, the transients included both extra- and intracellular components. The recruitment of intracellular Ca2+ increased as the stimulus duration decreased. At the threshold of 200–300 nM, the transients were amplified by calcium-induced calcium release. We …


Oxidative Effects Of Nanosecond Pulsed Electric Field Exposure In Cells And Cell-Free Media, Olga N. Pakhomova, Vera A. Khorokhorina, Angela M. Bowman, Raminta Rodaitė-Riševičienė, Gintautas Saulis, Shu Xiao, Andrei G. Pakhomov Jan 2012

Oxidative Effects Of Nanosecond Pulsed Electric Field Exposure In Cells And Cell-Free Media, Olga N. Pakhomova, Vera A. Khorokhorina, Angela M. Bowman, Raminta Rodaitė-Riševičienė, Gintautas Saulis, Shu Xiao, Andrei G. Pakhomov

Bioelectrics Publications

Nanosecond pulsed electric field (nsPEF) is a novel modality for permeabilization of membranous structures and intracellular delivery of xenobiotics. We hypothesized that oxidative effects of nsPEF could be a separate primary mechanism responsible for bioeffects. ROS production in cultured cells and media exposed to 300-ns PEF (1–13 kV/cm) was assessed by oxidation of 2′, 7′-dichlorodihydrofluoresein (H2DCF), dihidroethidium (DHE), or Amplex Red. When a suspension of H2DCF-loaded cells was subjected to nsPEF, the yield of fluorescent 2′,7′dichlorofluorescein (DCF) increased proportionally to the pulse number and cell density. DCF emission increased with time after exposure in nsPEF-sensitive Jurkat …


An Apoptosis Targeted Stimulus With Nanosecond Pulsed Electric Fields (Nspefs) In E4 Squamous Cell Carcinoma, Wei Ren, Stephen J. Beebe Jan 2011

An Apoptosis Targeted Stimulus With Nanosecond Pulsed Electric Fields (Nspefs) In E4 Squamous Cell Carcinoma, Wei Ren, Stephen J. Beebe

Bioelectrics Publications

Stimuli directed towards activation of apoptosis mechanisms are an attractive approach to eliminate evasion of apoptosis, a ubiquitous cancer hallmark. In these in vitro studies, kinetics and electric field thresholds for several apoptosis characteristics are defined in E4 squamous carcinoma cells (SCC) exposed to ten 300 ns pulses with increasing electric fields. Cell death was [95% at the highest electric field and coincident with phosphatidylserine externalization, caspase and calpain activation in the presence and absence of cytochrome c release, decreases in Bid and mitochondria membrane potential (Δψm) without apparent changes reactive oxygen species levels or in Bcl2 and Bclxl levels. …


Self-Consistent Analyses For Potential Conduction Block In Nerves By An Ultrashort High-Intensity Electric Pulse, R. P. Joshi, A. Mishra, Q. Hu, K. H. Schoenbach, A. Pakhomov Jan 2007

Self-Consistent Analyses For Potential Conduction Block In Nerves By An Ultrashort High-Intensity Electric Pulse, R. P. Joshi, A. Mishra, Q. Hu, K. H. Schoenbach, A. Pakhomov

Bioelectrics Publications

Simulation studies are presented that probe the possibility of using high-field (>100kV ∕ cm), short-duration (∼50ns) electrical pulses for nonthermal and reversible cessation of biological electrical signaling pathways. This would have obvious applications in neurophysiology, clinical research, neuromuscular stimulation therapies, and even nonlethal bioweapons development. The concept is based on the creation of a sufficiently high density of pores on the nerve membrane by an electric pulse. This modulates membrane conductance and presents an effective "electrical short" to an incident voltage wave traveling across a nerve. Net blocking of action potential propagation can then result. A continuum approach based …


Simulations Of Nanopore Formation And Phosphatidylserine Externalization In Lipid Membranes Subjected To A High-Intensity, Ultrashort Electric Pulse, Q. Hu, R. P. Joshi, K. H. Schoenbach Jan 2005

Simulations Of Nanopore Formation And Phosphatidylserine Externalization In Lipid Membranes Subjected To A High-Intensity, Ultrashort Electric Pulse, Q. Hu, R. P. Joshi, K. H. Schoenbach

Bioelectrics Publications

A combined MD simulator and time dependent Laplace solver are used to analyze the electrically driven phosphatidylserine externalization process in cells. Time dependent details of nanopore formation at cell membranes in response to a high-intensity (100kV∕cm), ultrashort (10ns) electric pulse are also probed. Our results show that nanosized pores could typically be formed within about 5ns. These predictions are in very good agreement with recent experimental data. It is also demonstrated that defect formation and PS externalization in membranes should begin on the anode side. Finally, the simulations confirm that PS externalization is a nanopore facilitated event, rather than the …


Selective Field Effects On Intracellular Vacuoles And Vesicle Membranes With Nanosecond Electric Pulses, Ephrem Tekle, Hammou Oubrahim, Sergey M. Dzekunov, Juergen F. Kolb, Karl H. Schoenbach Jan 2005

Selective Field Effects On Intracellular Vacuoles And Vesicle Membranes With Nanosecond Electric Pulses, Ephrem Tekle, Hammou Oubrahim, Sergey M. Dzekunov, Juergen F. Kolb, Karl H. Schoenbach

Bioelectrics Publications

Electric pulses across intact vesicles and cells can lead to transient increase in permeability of their membranes. We studied the integrity of these membranes in response to external electric pulses of high amplitude and submicrosecond duration with a primary aim of achieving selective permeabilization. These effects were examined in two separate model systems comprising of 1), a mixed population of 1,2-di-oleoyl-sn-glycero-3-phosphocholine phospholipid vesicles and in 2), single COS-7 cells, in which large endosomal membrane vacuoles were induced by stimulated endocytosis. It has been shown that large and rapidly varying external electric fields, with pulses shorter than the charging time of …


Stimulation Of Capacitative Calcium Entry In Hl-60 Cells By Nanosecond Pulsed Electric Fields, Jody A. White, Peter F. Blackmore, Karl H. Schoenbach, Stephen J. Beebe Jan 2004

Stimulation Of Capacitative Calcium Entry In Hl-60 Cells By Nanosecond Pulsed Electric Fields, Jody A. White, Peter F. Blackmore, Karl H. Schoenbach, Stephen J. Beebe

Bioelectrics Publications

Nanosecond pulsed electric fields (nsPEFs) are hypothesized to affect intracellular structures in living cells providing a new means to modulate cell signal transduction mechanisms. The effects of nsPEFs on the release of internal calcium and activation of calcium influx in HL-60 cells were investigated by using real time fluorescent microscopy with Fluo-3 and fluorometry with Fura-2. nsPEFs induced an increase in intracellular calcium levels that was seen in all cells. With pulses of 60 ns duration and electric fields between 4 and 15 kV/cm, intracellular calcium increased 200-700 nM, respectively, above basal levels (similar to100 nM), while the uptake of …


The Effects Of Intense Submicrosecond Electrical Pulses On Cells, Jingdong Deng, Karl H. Schoenbach, E. Stephen Buescher, Pamela S. Hair, Paula M. Fox, Stephen J. Beebe Apr 2003

The Effects Of Intense Submicrosecond Electrical Pulses On Cells, Jingdong Deng, Karl H. Schoenbach, E. Stephen Buescher, Pamela S. Hair, Paula M. Fox, Stephen J. Beebe

Bioelectrics Publications

A simple electrical model for living cells predicts an increasing probability for electric field interactions with intracellular substructures of both prokaryotic and eukaryotic cells when the electric pulse duration is reduced into the submicrosecond range. The validity of this hypothesis was verified experimentally by applying electrical pulses (durations 100 μs– 60 ns, electric field intensities 3–150 kV/cm) to Jurkat cells suspended in physiologic buffer containing propidium iodide. Effects on Jurkat cells were assessed by means of temporally resolved fluorescence and light microscopy. For the longest applied pulses, immediate uptake of propidium iodide occurred consistent with electroporation as the cause of …


Improved Energy Model For Membrane Electroporation In Biological Cells Subjected To Electrical Pulses, R. P. Joshi, Q. Hu, K. H. Schoenbach, H. P. Hjalmarson Jan 2002

Improved Energy Model For Membrane Electroporation In Biological Cells Subjected To Electrical Pulses, R. P. Joshi, Q. Hu, K. H. Schoenbach, H. P. Hjalmarson

Bioelectrics Publications

A self-consistent model analysis of electroporation in biological cells has been carried out based on an improved energy model. The simple energy model used in the literature is somewhat incorrect and unphysical for a variety of reasons. Our model for the pore formation energy E(r) includes a dependence on pore population and density. It also allows for variable surface tension, incorporates the effects of finite conductivity on the electrostatic correction term, and is dynamic in nature. Self-consistent calculations, based on a coupled scheme involving the Smoluchowski equation and the improved energy model, are presented. It is shown that E(r) becomes …


Mechanism For Membrane Electroporation Irreversibility Under High-Intensity, Ultrashort Electrical Pulse Conditions, R. P. Joshi, K. H. Schoenbach Jan 2002

Mechanism For Membrane Electroporation Irreversibility Under High-Intensity, Ultrashort Electrical Pulse Conditions, R. P. Joshi, K. H. Schoenbach

Bioelectrics Publications

An improved electroporation model is used to address membrane irreversibility under ultrashort electric pulse conditions. It is shown that membranes can survive a strong electric pulse and recover provided the pore distribution has a relatively large spread. If, however, the population consists predominantly of larger radii pores, then irreversibility can result. Physically, such a distribution could arise if pores at adjacent sites coalesce. The requirement of close proximity among the pore sites is more easily satisfied in smaller organelles than in outer cell membranes. Model predictions are in keeping with recent observations of cell damage to intracellular organelles (e.g., mitochondria), …