Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Life Sciences

Environmental Forcing Does Not Induce Diel Or Synoptic Variation In The Carbon Isotope Content Of Forest Soil Respiration, Steven J. Hall, D. R. Bowling, J. E. Egan Aug 2015

Environmental Forcing Does Not Induce Diel Or Synoptic Variation In The Carbon Isotope Content Of Forest Soil Respiration, Steven J. Hall, D. R. Bowling, J. E. Egan

Steven J. Hall

Recent studies have examined temporal fluctuations in the amount and carbon isotope content (δ13C) of CO2 produced by the respiration of roots and soil organisms. These changes have been correlated with diel cycles of environmental forcing (e.g., sunlight and soil temperature) and with synoptic-scale atmospheric motion (e.g., rain events and pressure-induced ventilation). We used an extensive suite of measurements to examine soil respiration over 2 months in a subalpine forest in Colorado, USA (the Niwot Ridge AmeriFlux forest). Observations included automated measurements of CO2 and δ13C of CO2 in the soil efflux, the soil gas profile, and forest air. There …


Lignin Decomposition Is Sustained Under Fluctuating Redox Conditions In Humid Tropical Forest Soils, Steven J. Hall, Whendee L. Silver, Vitaliy I. Timokhin, Kenneth E. Hammel Jul 2015

Lignin Decomposition Is Sustained Under Fluctuating Redox Conditions In Humid Tropical Forest Soils, Steven J. Hall, Whendee L. Silver, Vitaliy I. Timokhin, Kenneth E. Hammel

Steven J. Hall

Lignin mineralization represents a critical flux in the terrestrial carbon (C) cycle, yet little is known about mechanisms and environmental factors controlling lignin breakdown in mineral soils. Hypoxia is thought to suppress lignin decomposition, yet potential effects of oxygen (O2) variability in surface soils have not been explored. Here, we tested the impact of redox fluctuations on lignin breakdown in humid tropical forest soils during ten-week laboratory incubations. We used synthetic lignins labeled with 13C in either of two positions (aromatic methoxyl or propyl side chain Cb) to provide highly sensitive and specific measures of lignin mineralization seldom employed in …


Large Fluxes And Rapid Turnover Of Mineral-Associated Carbon Across Topographic Gradients In A Humid Tropical Forest: Insights From Paired 14c Analysis, Steven J. Hall, G. Mcnicol, T. Natake, W. L. Silver Apr 2015

Large Fluxes And Rapid Turnover Of Mineral-Associated Carbon Across Topographic Gradients In A Humid Tropical Forest: Insights From Paired 14c Analysis, Steven J. Hall, G. Mcnicol, T. Natake, W. L. Silver

Steven J. Hall

It has been proposed that the large soil carbon (C) stocks of humid tropical forests result predominantly from C stabilization by reactive minerals, whereas oxygen (O2) limitation of decomposition has received much less attention. We examined the importance of these factors in explaining patterns of C stocks and turnover in the Luquillo Experimental Forest, Puerto Rico, using radiocarbon (14C) measurements of contemporary and archived samples. Samples from ridge, slope, and valley positions spanned three soil orders (Ultisol, Oxisol, Inceptisol) representative of humid tropical forests, and differed in texture, reactive metal content, O2 availability, and root biomass. Mineral-associated C comprised the …


Differential Effects Of Canopy Trimming And Litter Deposition On Litterfall And Nutrient Dynamics In A Wet Subtropical Forest, Steven J. Hall, Whendee L. Silver, Grizelle González Nov 2014

Differential Effects Of Canopy Trimming And Litter Deposition On Litterfall And Nutrient Dynamics In A Wet Subtropical Forest, Steven J. Hall, Whendee L. Silver, Grizelle González

Steven J. Hall

Humid tropical forests have the highest rates of litterfall production globally, which fuels rapid nutrient recycling and high net ecosystem production. Severe storm events significantly alter patterns in litterfall mass and nutrient dynamics through a combination of canopy disturbance and litter deposition. In this study, we used a large-scale long-term manipulation experiment to explore the separate and combined effects of canopy trimming and litter deposition on litterfall rates and litter nutrient concentrations and content. The deposition of fine litter associated with the treatments was equivalent to more than two times the annual fine litterfall mass and nutrient content in control …


Breaking The Enzymatic Latch: Impacts Of Reducing Conditions On Hydrolytic Enzyme Activity In Tropical Forest Soils, Steven J. Hall, Jonathan Treffkorn, Whendee L. Silver Oct 2014

Breaking The Enzymatic Latch: Impacts Of Reducing Conditions On Hydrolytic Enzyme Activity In Tropical Forest Soils, Steven J. Hall, Jonathan Treffkorn, Whendee L. Silver

Steven J. Hall

The enzymatic latch hypothesis proposes that oxygen (O2) limitation promotes wetland carbon (C) storage by indirectly decreasing the activities of hydrolytic enzymes that decompose organic matter. Humid tropical forest soils are often characterized by low and fluctuating redox conditions and harbor a large pool of organic matter, yet they also have the fastest decomposition rates globally. We tested the enzymatic latch hypothesis across a soil O2 gradient in the Luquillo Experimental Forest, Puerto Rico, USA. Enzyme activities expressed on a soil mass basis did not systematically decline across a landscape O2 gradient, nor did phenolics accumulate, the proposed mechanism of …


Iron Oxidation Stimulates Organic Matter Decomposition In Humid Tropical Forest Soils, Steven J. Hall, Whendee L. Silver Jul 2013

Iron Oxidation Stimulates Organic Matter Decomposition In Humid Tropical Forest Soils, Steven J. Hall, Whendee L. Silver

Steven J. Hall

Humid tropical forests have the fastest rates of organic matter decomposition globally, which often coincide with fluctuating oxygen (O2) availability in surface soils. Microbial iron (Fe) reduction generates reduced iron [Fe(II)] under anaerobic conditions, which oxidizes to Fe(III) under subsequent aerobic conditions. We demonstrate that Fe (II) oxidation stimulates organic matter decomposition via two mechanisms: (i) organic matter oxidation, likely driven by reactive oxygen species; and (ii) increased dissolved organic carbon (DOC) availability, likely driven by acidification. Phenol oxidative activity increased linearly with Fe(II) concentrations (P < 0.0001, pseudo R2 = 0.79) in soils sampled within and among five tropical forest sites. A similar pattern occurred in the absence of soil, suggesting an abiotic driver of this reaction. No phenol oxidative activity occurred in soils under anaerobic conditions, implying the importance of oxidants such as O2 or hydrogen peroxide (H2O2) in addition to Fe(II). Reactions between Fe(II) and H2O2 generate hydroxyl radical, a strong nonselective oxidant of organic compounds. We found increasing consumption of H2O2 as soil Fe(II) concentrations increased, suggesting that reactive oxygen species produced by Fe(II) oxidation explained variation in phenol oxidative activity among samples. Amending soils with Fe(II) at field concentrations stimulated short-term C mineralization by up to 270%, likely via a second mechanism. Oxidation of Fe(II) drove a decrease in pH and a monotonic increase in DOC; a decline of two pH units doubled DOC, likely stimulating microbial respiration. We obtained similar results by manipulating soil acidity independently of Fe(II), implying that Fe(II) oxidation affected C substrate availability via pH fluctuations, in addition to producing reactive oxygen species. Iron oxidation coupled to organic matter decomposition contributes to rapid rates of C cycling across humid tropical forests in spite of periodic O2 limitation, and may help explain the rapid turnover of complex C molecules in these soils.


When Wet Gets Wetter: Decoupling Of Moisture, Redox Biogeochemistry, And Greenhouse Gas Fluxes In A Humid Tropical Forest Soil, Steven J. Hall, William H. Mcdowell, Whendee L. Silver Jan 2013

When Wet Gets Wetter: Decoupling Of Moisture, Redox Biogeochemistry, And Greenhouse Gas Fluxes In A Humid Tropical Forest Soil, Steven J. Hall, William H. Mcdowell, Whendee L. Silver

Steven J. Hall

Upland humid tropical forest soils are often characterized by fluctuating redox dynamics that vary temporally and spatially across the landscape. An increase in the frequency and intensity of rainfall events with climate change is likely to affect soil redox reactions that control the production and emissions of greenhouse gases. We used a 24-day rainfall manipulation experiment to evaluate temporal and spatial trends of surface soil (0–20 cm) redox-active chemical species and greenhouse gas fluxes in the Luquillo Experimental Forest, Puerto Rico. Treatments consisted of a high rainfall simulation (60 mm day-1), a fluctuating rainfall regime, and a control. Water addition …


Cultural Disturbances And Local Ecological Knowledge Mediate Cattail (Typha Domingensis) Invasion In Lake Pátzcuaro, México, Steven J. Hall Apr 2009

Cultural Disturbances And Local Ecological Knowledge Mediate Cattail (Typha Domingensis) Invasion In Lake Pátzcuaro, México, Steven J. Hall

Steven J. Hall

The influence of local actors and socioeconomic constraints on biological invasions is often ignored. Wetland plant harvesters appeared to intentionally influence cattail (Typha domingensis) invasion around Lake Pátzcuaro, México, by altering their harvesting regimes, according to interviews with 44 expert respondents and botanical surveys. The oldest and most experienced harvesters reported controlling Typha initially, sometimes through organized eradication efforts, in order to protect Schoenoplectus californicus, an economically and culturally valuable wetland plant. Later, outsiders commoditized Typha by introducing new weaving designs popular with tourists, while industrial products and new livelihood activities reduced Schoenoplectus harvest. Harvesters from several communities began to …


Comparative Pollination Biology Of Sympatric And Allopatric Andean Iochroma (Solanaceae)1, Steven J. Hall, Stacy Dewitt Smith, Pablo R. Izquierdo, David A. Baum Dec 2008

Comparative Pollination Biology Of Sympatric And Allopatric Andean Iochroma (Solanaceae)1, Steven J. Hall, Stacy Dewitt Smith, Pablo R. Izquierdo, David A. Baum

Steven J. Hall

Field studies were conducted for 15 species of Iochroma Benth. and the nested genus Acnistus Schott to quantify the diversity of pollination systems and to assess the potential contribution of pollinator behavior to the persistence of closely related species in sympatry. We combined measures of pollinator visitation and pollen deposition to estimate the importance of major groups of pollinators for each species, and we calculated proportional similarity in the pollinator assemblage among species. We found that 12 species of Iochroma, encompassing a range of flower colors and sizes, were principally pollinated by hummingbirds and, in many cases, by the same …