Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 129

Full-Text Articles in Life Sciences

Mutational Analysis Of The Nitrogenase Carbon Monoxide Protective Protein Cown Reveals That A Conserved C‑Terminal Glutamic Acid Residue Is Necessary For Its Activity, Dustin L. Willard, Joshuah J. Arellano, Mitch Underdahl, Terrence M. Lee, Avinash S. Ramaswamy, Gabriella Fumes, Agatha Kliman, Emily Y. Wong, Cedric P. Owens Dec 2023

Mutational Analysis Of The Nitrogenase Carbon Monoxide Protective Protein Cown Reveals That A Conserved C‑Terminal Glutamic Acid Residue Is Necessary For Its Activity, Dustin L. Willard, Joshuah J. Arellano, Mitch Underdahl, Terrence M. Lee, Avinash S. Ramaswamy, Gabriella Fumes, Agatha Kliman, Emily Y. Wong, Cedric P. Owens

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Nitrogenase is the only enzyme that catalyzes the reduction of nitrogen gas into ammonia. Nitrogenase is tightly inhibited by the environmental gas carbon monoxide (CO). Many nitrogen fixing bacteria protect nitrogenase from CO inhibition using the protective protein CowN. This work demonstrates that a conserved glutamic acid residue near the C-terminus of Gluconacetobacter diazotrophicus CowN is necessary for its function. Mutation of the glutamic acid residue abolishes both CowN’s protection against CO inhibition and the ability of CowN to bind to nitrogenase. In contrast, a conserved C-terminal cysteine residue is not important for CO protection by CowN. Overall, this work …


Analyzing Conformational Changes In The Binding Of Hiv-1 Matrix Protein, N And C Terminals, To Calmodulin, Nousha Karimi, Fabian Valdez, Davis Mau, K. Sakamaki May 2023

Analyzing Conformational Changes In The Binding Of Hiv-1 Matrix Protein, N And C Terminals, To Calmodulin, Nousha Karimi, Fabian Valdez, Davis Mau, K. Sakamaki

Student Scholar Symposium Abstracts and Posters

Worldwide, more than 38 million people are living with human immunodeficiency virus (HIV), about 84 million people have become infected with HIV since the start of the epidemic, and 40.1 million of those diagnoses led to death. HIV Type-1 is the most common type of HIV, attacking the body’s immune system by destroying CD4 cells. The virus attaches itself to the CD4 cell, taking control of its DNA and replicating itself to release more HIV into the bloodstream. The Gag proteins of HIV-1 are crucial players in the virus’ assembly, release, and maturation; it utilizes its essential matrix protein (MA) …


From Deep Mutational Mapping Of Allosteric Protein Landscapes To Deep Learning Of Allostery And Hidden Allosteric Sites: Zooming In On “Allosteric Intersection” Of Biochemical And Big Data Approaches, Gennady M. Verkhivker, Mohammed Alshahrani, Grace Gupta, Sian Xiao, Peng Tao Apr 2023

From Deep Mutational Mapping Of Allosteric Protein Landscapes To Deep Learning Of Allostery And Hidden Allosteric Sites: Zooming In On “Allosteric Intersection” Of Biochemical And Big Data Approaches, Gennady M. Verkhivker, Mohammed Alshahrani, Grace Gupta, Sian Xiao, Peng Tao

Mathematics, Physics, and Computer Science Faculty Articles and Research

The recent advances in artificial intelligence (AI) and machine learning have driven the design of new expert systems and automated workflows that are able to model complex chemical and biological phenomena. In recent years, machine learning approaches have been developed and actively deployed to facilitate computational and experimental studies of protein dynamics and allosteric mechanisms. In this review, we discuss in detail new developments along two major directions of allosteric research through the lens of data-intensive biochemical approaches and AI-based computational methods. Despite considerable progress in applications of AI methods for protein structure and dynamics studies, the intersection between allosteric …


Methylene Blue Inhibits Cromakalim-Activated K+ Currents In Follicle-Enclosed Oocytes, Dmytro Isaev, Keun-Hang Susan Yang, Georg Petroianu, Dietrich Ernst Lorke, Murat Oz Jan 2023

Methylene Blue Inhibits Cromakalim-Activated K+ Currents In Follicle-Enclosed Oocytes, Dmytro Isaev, Keun-Hang Susan Yang, Georg Petroianu, Dietrich Ernst Lorke, Murat Oz

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

The effects of methylene blue (MB) on cromakalim-induced K+ currents were investigated in follicle-enclosed Xenopus oocytes. In concentrations ranging from 3–300 μM, MB inhibited K+ currents (IC50: 22.4 μM) activated by cromakalim, which activates KATP channels. MB inhibited cromakalim-activated K+ currents in a noncompetitive and voltage-independent manner. The respective EC50 and slope values for cromakalim-activation of K+ currents were 194 ± 21 µM and 0.91 for controls, and 206 ± 24 µM and 0.87 in the presence of 30 μM MB. The inhibition of cromakalim-induced K+ currents by MB was not …


Arginine Methylation Of The Pgc-1Α C‑Terminus Is Temperature- Dependent, Meryl Mendoz, Mariel Mendoza, Tiffany Lubrino, Sidney Briski, Immaculeta Osuji, Janielle Cuala, Brendan Ly, Ivan Ocegueda, Harvey Peralta, Benjamin A. Garcia, Cecilia Zurita-Lopez Dec 2022

Arginine Methylation Of The Pgc-1Α C‑Terminus Is Temperature- Dependent, Meryl Mendoz, Mariel Mendoza, Tiffany Lubrino, Sidney Briski, Immaculeta Osuji, Janielle Cuala, Brendan Ly, Ivan Ocegueda, Harvey Peralta, Benjamin A. Garcia, Cecilia Zurita-Lopez

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

We set out to determine whether the C-terminus (amino acids 481–798) of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α, UniProt Q9UBK2), a regulatory metabolic protein involved in mitochondrial biogenesis, and respiration, is an arginine methyltransferase substrate. Arginine methylation by protein arginine methyltransferases (PRMTs) alters protein function and thus contributes to various cellular processes. In addition to confirming methylation of the C-terminus by PRMT1 as described in the literature, we have identified methylation by another member of the PRMT family, PRMT7. We performed in vitro methylation reactions using recombinant mammalian PRMT7 and PRMT1 at 37, 30, 21, 18, and 4 °C. …


Analyzing Interactions Of Calmodulin With Hiv-1 Matrix Protein, Andrea Sandoval, D. Mau, N. Karimi, K. Sakamaki, C. Owens, Jerry Larue Nov 2022

Analyzing Interactions Of Calmodulin With Hiv-1 Matrix Protein, Andrea Sandoval, D. Mau, N. Karimi, K. Sakamaki, C. Owens, Jerry Larue

Student Scholar Symposium Abstracts and Posters

Human immunodeficiency virus (HIV) attacks the immune system and if left untreated, could cause acquired immunodeficiency syndrome (AIDS). The HIV matrix protein (HIV-MA) is involved in replication and regulation of the HIV virus. Calmodulin (CaM), a calcium-binding protein found in all eukaryotes, has a potential role in the viral replication of HIV-MA which plays a key role in the replication of HIV. In order to investigate the interactions between calmodulin and the HIV-MA, a series of titrations with CaM are performed using circular dichroism. Circular dichroism (CD) uses circularly polarized light to observe the secondary structure of a molecule. The …


Identifying A Glucocorticoid-Activated Gpcr That Rapidly And Non-Genomically Increases Camp Levels In Mammalian Cells, Francisco Nunez Aug 2022

Identifying A Glucocorticoid-Activated Gpcr That Rapidly And Non-Genomically Increases Camp Levels In Mammalian Cells, Francisco Nunez

Pharmaceutical Sciences (PhD) Dissertations

Glucocorticoids (GCs) are steroid hormones that regulate diverse physiological processes. Synthetic versions of GCs are commonly used to treat inflammatory diseases such as asthma by modulating gene expression to suppressing several inflammatory activities. However, it is estimated that 5-10% of asthmatics are unresponsive to GCs, which may be explained by receptor desensitization and/or the presence of a neutrophilic endotype. One understudied phenomenon of GCs is their ability to induce rapid, non-genomic actions. For example, GCs can acutely modulate calcium concentrations levels, induce smooth muscle relaxation and modulate nitric oxide synthase activity, within minutes and sometimes seconds, which is too rapid …


Evaluating Alternative Ebullition Models For Predicting Peatland Methane Emission And Its Pathways Via Data–Model Fusion, Shuang Ma, Lifen Jiang, Rachel M. Wilson, Jeff P. Chanton, Scott Bridgham, Shuli Niu, Colleen M. Iversen, Avni Malhotra, Jiang Jiang, Xingjie Lu, Jason Keller, Xiaofeng Xu, Daniel M. Ricciuto, Paul J. Hanson, Yiqi Luo Apr 2022

Evaluating Alternative Ebullition Models For Predicting Peatland Methane Emission And Its Pathways Via Data–Model Fusion, Shuang Ma, Lifen Jiang, Rachel M. Wilson, Jeff P. Chanton, Scott Bridgham, Shuli Niu, Colleen M. Iversen, Avni Malhotra, Jiang Jiang, Xingjie Lu, Jason Keller, Xiaofeng Xu, Daniel M. Ricciuto, Paul J. Hanson, Yiqi Luo

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Understanding the dynamics of peatland methane (CH4) emissions and quantifying sources of uncertainty in estimating peatland CH4 emissions are critical for mitigating climate change. The relative contributions of CH4 emission pathways through ebullition, plant-mediated transport, and diffusion, together with their different transport rates and vulnerability to oxidation, determine the quantity of CH4 to be oxidized before leaving the soil. Notwithstanding their importance, the relative contributions of the emission pathways are highly uncertain. In particular, the ebullition process is more uncertain and can lead to large uncertainties in modeled CH4 emissions. To improve model simulations …


Evaluating Alternative Ebullition Models For Predicting Peatland Methane Emission And Its Pathways Via Data–Model Fusion, Shuang Ma, Lifen Jiang, Rachel M. Wilson, Jeff P. Chanton, Scott Bridgham, Shuli Niu, Colleen M. Iversen, Avni Malhotra, Jiang Jiang, Xingjie Lu, Yuanyuan Huang, Jason Keller, Xiaofeng Xu, Daniel M. Ricciuto, Paul J. Hanson, Yiqi Luo Apr 2022

Evaluating Alternative Ebullition Models For Predicting Peatland Methane Emission And Its Pathways Via Data–Model Fusion, Shuang Ma, Lifen Jiang, Rachel M. Wilson, Jeff P. Chanton, Scott Bridgham, Shuli Niu, Colleen M. Iversen, Avni Malhotra, Jiang Jiang, Xingjie Lu, Yuanyuan Huang, Jason Keller, Xiaofeng Xu, Daniel M. Ricciuto, Paul J. Hanson, Yiqi Luo

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Understanding the dynamics of peatland methane (CH4) emissions and quantifying sources of uncertainty in estimating peatland CH4 emissions are critical for mitigating climate change. The relative contributions of CH4 emission pathways through ebullition, plant-mediated transport, and diffusion, together with their different transport rates and vulnerability to oxidation, determine the quantity of CH4 to be oxidized before leaving the soil. Notwithstanding their importance, the relative contributions of the emission pathways are highly uncertain. In particular, the ebullition process is more uncertain and can lead to large uncertainties in modeled CH4 emissions. To improve model simulations of CH4 emission and its pathways, …


1st Place Contest Entry: Designing Hollow Nanogels For Drug Delivery Applications, Mo Hijazi Apr 2022

1st Place Contest Entry: Designing Hollow Nanogels For Drug Delivery Applications, Mo Hijazi

Kevin and Tam Ross Undergraduate Research Prize

This is Mo Hijazi's submission for the 2022 Kevin and Tam Ross Undergraduate Research Prize, which won first place. It contains their essay on using library resources, their bibliography, and a summary of their research project on hollow-core nanogels.

Mo is a second-year student at Chapman University, majoring in Biological Sciences. Their faculty mentor is Dr. Molla Islam.


Structural And Computational Studies Of The Sars-Cov-2 Spike Protein Binding Mechanisms With Nanobodies: From Structure And Dynamics To Avidity-Driven Nanobody Engineering, Gennady M. Verkhivker Mar 2022

Structural And Computational Studies Of The Sars-Cov-2 Spike Protein Binding Mechanisms With Nanobodies: From Structure And Dynamics To Avidity-Driven Nanobody Engineering, Gennady M. Verkhivker

Mathematics, Physics, and Computer Science Faculty Articles and Research

Nanobodies provide important advantages over traditional antibodies, including their smaller size and robust biochemical properties such as high thermal stability, high solubility, and the ability to be bioengineered into novel multivalent, multi-specific, and high-affinity molecules, making them a class of emerging powerful therapies against SARS-CoV-2. Recent research efforts on the design, protein engineering, and structure-functional characterization of nanobodies and their binding with SARS-CoV-2 S proteins reflected a growing realization that nanobody combinations can exploit distinct binding epitopes and leverage the intrinsic plasticity of the conformational landscape for the SARS-CoV-2 S protein to produce efficient neutralizing and mutation resistant characteristics. Structural …


Allosteric Determinants Of The Sars-Cov-2 Spike Protein Binding With Nanobodies: Examining Mechanisms Of Mutational Escape And Sensitivity Of The Omicron Variant, Gennady M. Verkhivker Feb 2022

Allosteric Determinants Of The Sars-Cov-2 Spike Protein Binding With Nanobodies: Examining Mechanisms Of Mutational Escape And Sensitivity Of The Omicron Variant, Gennady M. Verkhivker

Mathematics, Physics, and Computer Science Faculty Articles and Research

Structural and biochemical studies have recently revealed a range of rationally engineered nanobodies with efficient neutralizing capacity against the SARS-CoV-2 virus and resilience against mutational escape. In this study, we performed a comprehensive computational analysis of the SARS-CoV-2 spike trimer complexes with single nanobodies Nb6, VHH E, and complex with VHH E/VHH V nanobody combination. We combined coarse-grained and all-atom molecular simulations and collective dynamics analysis with binding free energy scanning, perturbation-response scanning, and network centrality analysis to examine mechanisms of nanobody-induced allosteric modulation and cooperativity in the SARS-CoV-2 spike trimer complexes with these nanobodies. By quantifying energetic and allosteric …


Escherichia Coli Alanyl-Trna Synthetase Maintains Proofreading Activity And Translational Accuracy Under Oxidative Stress, Arundhati Kavoor, Paul Kelly, Michael Ibba Feb 2022

Escherichia Coli Alanyl-Trna Synthetase Maintains Proofreading Activity And Translational Accuracy Under Oxidative Stress, Arundhati Kavoor, Paul Kelly, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Aminoacyl-tRNA synthetases (aaRSs) are enzymes that synthesize aminoacyl-tRNAs to facilitate translation of the genetic code. Quality control by aaRS proofreading and other mechanisms maintains translational accuracy, which promotes cellular viability. Systematic disruption of proofreading, as recently demonstrated for alanyl-tRNA synthetase (AlaRS), leads to dysregulation of the proteome and reduced viability. Recent studies showed that environmental challenges such as exposure to reactive oxygen species can also alter aaRS synthetic and proofreading functions, prompting us to investigate if oxidation might positively or negatively affect AlaRS activity. We found that while oxidation leads to modification of several residues in Escherichia coli AlaRS, unlike …


Characterizing The Amino Acid Activation Center Of The Naturally Editing-Deficient Aminoacyl-Trna Synthetase Phers In Mycoplasma Mobile, Nien-Ching Han, Arundhati Kavoor, Michael Ibba Jan 2022

Characterizing The Amino Acid Activation Center Of The Naturally Editing-Deficient Aminoacyl-Trna Synthetase Phers In Mycoplasma Mobile, Nien-Ching Han, Arundhati Kavoor, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

To ensure correct amino acids are incorporated during protein synthesis, aminoacyl-tRNA synthetases (aaRSs) employ proofreading mechanisms collectively referred to as editing. Although editing is important for viability, editing-deficient aaRSs have been identified in host-dependent organisms. In Mycoplasma mobile, editing-deficient PheRS and LeuRS have been identified. We characterized the amino acid activation site of MmPheRS and identified a previously unknown hyperaccurate mutation, L287F. Additionally, we report that m-Tyr, an oxidation byproduct of Phe which is toxic to editing-deficient cells, is poorly discriminated by MmPheRS activation and is not subjected to editing. Furthermore, expressing MmPheRS and the hyperaccurate variants renders …


Evaluation Of The Trunarc Handheld Narcotics Analyzer As A Pre-Analysis Screening Device For The Orange County Crime Lab, Sarah Yang, D. Bauer, C. Woltz, S. Soto, Michael Ibba Dec 2021

Evaluation Of The Trunarc Handheld Narcotics Analyzer As A Pre-Analysis Screening Device For The Orange County Crime Lab, Sarah Yang, D. Bauer, C. Woltz, S. Soto, Michael Ibba

Student Scholar Symposium Abstracts and Posters

Forensic analysis of suspected narcotics is often dangerous as the substances’ composition is unknown. Many techniques for drug identification require handling of the substance outside of its packaging, which can expose the analyst to potentially harmful chemicals. The TruNarc Handheld Narcotics Analyzer is a portable Raman spectroscopy device that is non-destructive of evidence and can be used to screen drugs through simple packaging to minimize the risk of exposure. The Orange County Crime Lab (OCCL) is testing the limits of this device to determine if it can be used to screen new evidence within the Seized Drugs Lab. The OCCL …


Physiological Roles Of Mammalian Transmembrane Adenylyl Cyclase Isoforms, Katrina F. Ostrom, Justin E. Lavigne, Tarsis F. Brust, Roland Seifert, Carmen Dessauer, Val J. Watts, Rennolds S. Ostrom Oct 2021

Physiological Roles Of Mammalian Transmembrane Adenylyl Cyclase Isoforms, Katrina F. Ostrom, Justin E. Lavigne, Tarsis F. Brust, Roland Seifert, Carmen Dessauer, Val J. Watts, Rennolds S. Ostrom

Pharmacy Faculty Articles and Research

Adenylyl cyclases (ACs) catalyze the conversion of ATP to the ubiquitous second messenger cAMP. Mammals possess nine isoforms of transmembrane ACs, dubbed AC1-9, that serve as major effector enzymes of G protein-coupled receptors. The transmembrane ACs display varying expression patterns across tissues, giving potential for them having a wide array of physiologic roles. Cells express multiple AC isoforms, implying that ACs have redundant functions. Furthermore, all transmembrane ACs are activated by Gαs so it was long assumed that all ACs are activated by Gαs-coupled GPCRs. AC isoforms partition to different microdomains of the plasma membrane and form …


Oxidation Alters The Architecture Of The Phenylalanyl-Trna Synthetase Editing Domain To Confer Hyperaccuracy, Pooja Srinivas, Rebecca E. Steiner, Ian J. Pavelich, Ricardo Guerrera-Ferreira, Puneet Juneja, Michael Ibba, Christine M. Dunham Sep 2021

Oxidation Alters The Architecture Of The Phenylalanyl-Trna Synthetase Editing Domain To Confer Hyperaccuracy, Pooja Srinivas, Rebecca E. Steiner, Ian J. Pavelich, Ricardo Guerrera-Ferreira, Puneet Juneja, Michael Ibba, Christine M. Dunham

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

High fidelity during protein synthesis is accomplished by aminoacyl-tRNA synthetases (aaRSs). These enzymes ligate an amino acid to a cognate tRNA and have proofreading and editing capabilities that ensure high fidelity. Phenylalanyl-tRNA synthetase (PheRS) preferentially ligates a phenylalanine to a tRNAPhe over the chemically similar tyrosine, which differs from phenylalanine by a single hydroxyl group. In bacteria that undergo exposure to oxidative stress such as Salmonella enterica serovar Typhimurium, tyrosine isomer levels increase due to phenylalanine oxidation. Several residues are oxidized in PheRS and contribute to hyperactive editing, including against mischarged Tyr-tRNAPhe, despite these oxidized residues not …


Cown Sustains Nitrogenase Turnover In The Presence Of The Inhibitor Carbon Monoxide, Michael S. Medina, Kevin O. Bretzing, Richard A. Aviles, Kiersten M. Chong, Alejandro Espinoza, Chloe Nicole G. Garcia, Benjamin B. Katz, Ruchita N. Kharwa, Andrea Hernandez, Justin L. Lee, Terrence M. Lee, Christine Lo Verde, Max W. Strul, Emily Y. Wong, Cedric P. Owens Mar 2021

Cown Sustains Nitrogenase Turnover In The Presence Of The Inhibitor Carbon Monoxide, Michael S. Medina, Kevin O. Bretzing, Richard A. Aviles, Kiersten M. Chong, Alejandro Espinoza, Chloe Nicole G. Garcia, Benjamin B. Katz, Ruchita N. Kharwa, Andrea Hernandez, Justin L. Lee, Terrence M. Lee, Christine Lo Verde, Max W. Strul, Emily Y. Wong, Cedric P. Owens

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Nitrogenase is the only enzyme capable of catalyzing nitrogen fixation, the reduction of dinitrogen gas (N2) to ammonia (NH3). Nitrogenase is tightly inhibited by the environmental gas carbon monoxide (CO). Nitrogen-fixing bacteria rely on the protein CowN to grow in the presence of CO. However, the mechanism by which CowN operates is unknown. Here, we present the biochemical characterization of CowN and examine how CowN protects nitrogenase from CO. We determine that CowN interacts directly with nitrogenase and that CowN protection observes hyperbolic kinetics with respect to CowN concentration. At a CO concentration of 0.001 atm, …


Capsaicin Is A Negative Allosteric Modulator Of The 5-Ht3 Receptor, Eslam El Nebrisi, Tatiana Prytkova, Dietrich Ernst Lorke, Luke Howarth, Asma Hassan Alzaabi, Keun-Hang Susan Yang, Frank Christopher Howarth, Murat Oz Aug 2020

Capsaicin Is A Negative Allosteric Modulator Of The 5-Ht3 Receptor, Eslam El Nebrisi, Tatiana Prytkova, Dietrich Ernst Lorke, Luke Howarth, Asma Hassan Alzaabi, Keun-Hang Susan Yang, Frank Christopher Howarth, Murat Oz

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

In this study, effects of capsaicin, an active ingredient of the capsicum plant, were investigated on human 5-hydroxytryptamine type 3 (5-HT3) receptors. Capsaicin reversibly inhibited serotonin (5-HT)-induced currents recorded by two-electrode voltage clamp method in Xenopus oocytes. The inhibition was time- and concentration-dependent with an IC50 = 62 μM. The effect of capsaicin was not altered in the presence of capsazepine, and by intracellular BAPTA injections or trans-membrane potential changes. In radio-ligand binding studies, capsaicin did not change the specific binding of the 5-HT3 antagonist [3H]GR65630, indicating that it is a noncompetitive inhibitor of …


Modulation Of Escherichia Coli Translation By The Specific Inactivation Of TrnaGly Under Oxidative Stress, Lorenzo Eugenio Leiva, Andrea Pincheira, Sara Elgamal, Sandra D. Kienast, Verónica Bravo, Johannes Leufken, Daniela Gutiérrez, Sebastian A. Leidel, Michael Ibba, Assaf Katz Aug 2020

Modulation Of Escherichia Coli Translation By The Specific Inactivation Of TrnaGly Under Oxidative Stress, Lorenzo Eugenio Leiva, Andrea Pincheira, Sara Elgamal, Sandra D. Kienast, Verónica Bravo, Johannes Leufken, Daniela Gutiérrez, Sebastian A. Leidel, Michael Ibba, Assaf Katz

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Bacterial oxidative stress responses are generally controlled by transcription factors that modulate the synthesis of RNAs with the aid of some sRNAs that control the stability, and in some cases the translation, of specific mRNAs. Here, we report that oxidative stress additionally leads to inactivation of tRNAGly in Escherichia coli, inducing a series of physiological changes. The observed inactivation of tRNAGly correlated with altered efficiency of translation of Gly codons, suggesting a possible mechanism of translational control of gene expression under oxidative stress. Changes in translation also depended on the availability of glycine, revealing a mechanism whereby bacteria …


Leaf Traits Can Be Used To Predict Rates Of Litter Decomposition, Marc Rosenfield, Jennifer L. Funk, Jason K. Keller, Catrina Clausen, Kimberlee Cyphers Jun 2020

Leaf Traits Can Be Used To Predict Rates Of Litter Decomposition, Marc Rosenfield, Jennifer L. Funk, Jason K. Keller, Catrina Clausen, Kimberlee Cyphers

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Strong relationships exist between litter chemistry traits and rates of litter decomposition. However, leaf traits are more commonly found in online trait databases than litter traits and fewer studies have examined how well leaf traits predict litter decomposition rates. Furthermore, while bulk leaf nitrogen (N) content is known to regulate litter decomposition, few studies have explored the importance of N biochemistry fractions, such as protein and amino acid concentration. Here, we decomposed green leaves and naturally senesced leaf litter of nine species representing a wide range of leaf functional traits. We evaluated the ability of traits associated with leaf and …


Translational Regulation Of Environmental Adaptation In Bacteria, Rodney Tollerson Ii, Michael Ibba Jun 2020

Translational Regulation Of Environmental Adaptation In Bacteria, Rodney Tollerson Ii, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Bacteria must rapidly respond to both intracellular and environmental changes to survive. One critical mechanism to rapidly detect and adapt to changes in environmental conditions is control of gene expression at the level of protein synthesis. At each of the three major steps of translation—initiation, elongation, and termination—cells use stimuli to tune translation rate and cellular protein concentrations. For example, changes in nutrient concentrations in the cell can lead to translational responses involving mechanisms such as dynamic folding of riboswitches during translation initiation or the synthesis of alarmones, which drastically alter cell physiology. Moreover, the cell can fine-tune the levels …


Computational Molecular Docking Models And Design Of Diarylpentanoids For The Androgen Receptor, Jarett Guillow May 2020

Computational Molecular Docking Models And Design Of Diarylpentanoids For The Androgen Receptor, Jarett Guillow

Computational and Data Sciences (MS) Theses

The androgen receptor (AR) is a member of the nuclear receptor protein family that, upon binding to its natural ligand dihydrotestosterone (DHT) in the cytoplasm, translocates to the nucleus and exerts nuclear transcription factor activity to drive gene expression related to normal prostate development. AR signaling becomes overactive during the development and progression of prostate cancer through different mechanisms, including over-expression and mutation of the AR. Therefore, the AR is a prominent molecular target in the clinical management of prostate cancer. However, all therapeutic modalities targeting the AR, including androgen ablation therapy and AR block suffer from transient efficacy and …


Investigating The Interactions Between Individual Calmodulin And Hiv-1 Protein Domains, Riley K. Kendall, Jerry Larue May 2020

Investigating The Interactions Between Individual Calmodulin And Hiv-1 Protein Domains, Riley K. Kendall, Jerry Larue

Student Scholar Symposium Abstracts and Posters

The World Health Organization found that 37.9 million people were living with HIV by the end of 2018. HIV is a virus that weakens the immune system through viral replication and the destruction of CD4+ T-cells, which are white blood cells that detect infection and make antibodies. A cure for HIV has not yet been discovered. HIV-1 contains a Gag polyprotein which regulates the stages of viral replication. Previous studies suggest that the myristoyl group of a matrix protein peptide found on the Gag polyprotein, MA, forms a complex with a calcium-binding, multifunctional regulatory protein called Calmodulin (CaM). CaM …


Aminoacyl-Trna Synthetases, Miguel Angel Rubio Gomez, Michael Ibba Apr 2020

Aminoacyl-Trna Synthetases, Miguel Angel Rubio Gomez, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

The aminoacyl-tRNA synthetases are an essential and universally distributed family of enzymes that plays a critical role in protein synthesis, pairing tRNAs with their cognate amino acids for decoding mRNAs according to the genetic code. Synthetases help to ensure accurate translation of the genetic code by using both highly accurate cognate substrate recognition and stringent proofreading of noncognate products. While alterations in the quality control mechanisms of synthetases are generally detrimental to cellular viability, recent studies suggest that in some instances such changes facilitate adaption to stress conditions. Beyond their central role in translation, synthetases are also emerging as key …


Targeting Trna-Synthetase Interactions Towards Novel Therapeutic Discovery Against Eukaryotic Pathogens, Paul Kelly, Fatemeh Hadi-Nezhad, Dennis Y. Liu, Travis J. Lawrence, Roger G. Linington, Michael Ibba, David H. Ardell Feb 2020

Targeting Trna-Synthetase Interactions Towards Novel Therapeutic Discovery Against Eukaryotic Pathogens, Paul Kelly, Fatemeh Hadi-Nezhad, Dennis Y. Liu, Travis J. Lawrence, Roger G. Linington, Michael Ibba, David H. Ardell

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

The development of chemotherapies against eukaryotic pathogens is especially challenging because of both the evolutionary conservation of drug targets between host and parasite, and the evolution of strain-dependent drug resistance. There is a strong need for new nontoxic drugs with broad-spectrum activity against trypanosome parasites such as Leishmania and Trypanosoma. A relatively untested approach is to target macromolecular interactions in parasites rather than small molecular interactions, under the hypothesis that the features specifying macromolecular interactions diverge more rapidly through coevolution. We computed tRNA Class-Informative Features in humans and independently in eight distinct clades of trypanosomes, identifying parasite-specific informative features, …


Alanyl-Trna Synthetase Quality Control Prevents Global Dysregulation Of The Escherichia Coli Proteome, Paul Kelly, Nicholas Backes, Kyle Mohler, Christopher Buser, Arundhati Kavoor, Jesse Rinehart, Gregory Phillips, Michael Ibba Dec 2019

Alanyl-Trna Synthetase Quality Control Prevents Global Dysregulation Of The Escherichia Coli Proteome, Paul Kelly, Nicholas Backes, Kyle Mohler, Christopher Buser, Arundhati Kavoor, Jesse Rinehart, Gregory Phillips, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Mechanisms have evolved to prevent errors in replication, transcription, and translation of genetic material, with translational errors occurring most frequently. Errors in protein synthesis can occur at two steps, during tRNA aminoacylation and ribosome decoding. Recent advances in protein mass spectrometry have indicated that previous reports of translational errors have potentially underestimated the frequency of these events, but also that the majority of translational errors occur during ribosomal decoding, suggesting that aminoacylation errors are evolutionarily less tolerated. Despite that interpretation, there is evidence that some aminoacylation errors may be regulated, and thus provide a benefit to the cell, while others …


The Fitness Landscape Of The African Salmonella Typhimurium St313 Strain D23580 Reveals Unique Properties Of The Pbt1 Plasmid, Rocío Canals, Roy R. Chaudhuri, Rebecca E. Steiner, Siân V. Owen, Natalia Quinones-Olvera, Melita A. Gordon, Michael Baym, Michael Ibba, Jay C. D. Hinton Sep 2019

The Fitness Landscape Of The African Salmonella Typhimurium St313 Strain D23580 Reveals Unique Properties Of The Pbt1 Plasmid, Rocío Canals, Roy R. Chaudhuri, Rebecca E. Steiner, Siân V. Owen, Natalia Quinones-Olvera, Melita A. Gordon, Michael Baym, Michael Ibba, Jay C. D. Hinton

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

We have used a transposon insertion sequencing (TIS) approach to establish the fitness landscape of the African Salmonella enterica serovar Typhimurium ST313 strain D23580, to complement our previous comparative genomic and functional transcriptomic studies. We used a genome-wide transposon library with insertions every 10 nucleotides to identify genes required for survival and growth in vitro and during infection of murine macrophages. The analysis revealed genomic regions important for fitness under two in vitro growth conditions. Overall, 724 coding genes were required for optimal growth in LB medium, and 851 coding genes were required for growth in SPI-2-inducing minimal medium. These …


Translational Control Of Antibiotic Resistance, Anne Witzky, Rodney Tollerson Ii, Michael Ibba Jul 2019

Translational Control Of Antibiotic Resistance, Anne Witzky, Rodney Tollerson Ii, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Many antibiotics available in the clinic today directly inhibit bacterial translation. Despite the past success of such drugs, their efficacy is diminishing with the spread of antibiotic resistance. Through the use of ribosomal modifications, ribosomal protection proteins, translation elongation factors and mistranslation, many pathogens are able to establish resistance to common therapeutics. However, current efforts in drug discovery are focused on overcoming these obstacles through the modification or discovery of new treatment options. Here, we provide an overview for common mechanisms of resistance to translation-targeting drugs and summarize several important breakthroughs in recent drug development.


Purification And Characterization Of A Nonspecific Lipid Transfer Protein 1 (Nsltp1) From Ajwain (Trachyspermum Ammi) Seeds, Meshal Nazeer, Humera Waheed, Maria Saeed, Saman Yousuf Ali, M. Iqbal Choudhary, Zaheer Ul-Haq, Aftab Ahmed Mar 2019

Purification And Characterization Of A Nonspecific Lipid Transfer Protein 1 (Nsltp1) From Ajwain (Trachyspermum Ammi) Seeds, Meshal Nazeer, Humera Waheed, Maria Saeed, Saman Yousuf Ali, M. Iqbal Choudhary, Zaheer Ul-Haq, Aftab Ahmed

Pharmacy Faculty Articles and Research

Ajwain (Trachyspermum ammi) belongs to the family Umbelliferae, is commonly used in traditional, and folk medicine due to its carminative, stimulant, antiseptic, diuretic, antihypertensive, and hepatoprotective activities. Non-specific lipid transfer proteins (nsLTPs) reported from various plants are known to be involved in transferring lipids between membranes and in plants defense response. Here, we describe the complete primary structure of a monomeric non-specific lipid transfer protein 1 (nsLTP1), with molecular weight of 9.66 kDa, from ajwain seeds. The nsLTP1 has been purified by combination of chromatographic techniques, and further characterized by mass spectrometry, and Edman degradation. The ajwain nsLTP1 …