Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Plant Biology

University of Kentucky

Chlamydomonas reinhardtii

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Up Regulation Of Heat Shock Protein 70b (Hsp70b) And Ssa1 In Chlamydomonas Reinhardtii Via Hsp70a-Rbcs2 And Psad Promoter, B. Kirtley Amos Jan 2015

Up Regulation Of Heat Shock Protein 70b (Hsp70b) And Ssa1 In Chlamydomonas Reinhardtii Via Hsp70a-Rbcs2 And Psad Promoter, B. Kirtley Amos

Theses and Dissertations--Biosystems and Agricultural Engineering

Fabrication of effective algae cultivation systems adjacent to coal-fired power plants to fixate waste CO2 would represent a sizable step towards achieving a carbon neutral energy cycle. However, emission gas would elevate the algal cultivation system temperature and decreases its pH without expensive preprocessing. Increased temperature and acidity constitutes a profound stress on the algae. Although stressed algae produce heat shock proteins (HSPs) that promote protein folding and protect against stress, the ordinary biological response is insufficient to protect against coal flue gas. Experimental upregulation of HSPs could make algae respond to the stress caused by high temperatures and …


Evaluation Of Heat Shock Protein 70a (Hsp70a) In Chlamydomonas Reinhardtii, Sarah Nicole Short Jan 2012

Evaluation Of Heat Shock Protein 70a (Hsp70a) In Chlamydomonas Reinhardtii, Sarah Nicole Short

Theses and Dissertations--Biosystems and Agricultural Engineering

Algae are being considered as a possible tool for carbon dioxide mitigation because they uptake carbon dioxide during photosynthesis. Using flue gas from a coal-fired power plant as a carbon source would allow the algae to remove CO2 from the flue gas before it is emitted into the atmosphere. Because algae do not grow well at the high temperature, low pH conditions presented by flue gas, the traditional approach has been to alter the flue gas to suit the needs of the algae; however, this work aimed to genetically modify the algae Chlamydomonas reinhardtii to grow better at less …