Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology

Theses/Dissertations

2021

Institution
Keyword
Publication

Articles 1 - 30 of 215

Full-Text Articles in Life Sciences

Reproducibility Of Individual Dna Deposits Detected Through Cellular Fluorescence, Natalee Small-Davidson Dec 2021

Reproducibility Of Individual Dna Deposits Detected Through Cellular Fluorescence, Natalee Small-Davidson

Student Theses

Contact traces are an important part of DNA casework, but the probative value of any identified associations depends on the possibility of passive transfer. There is known individual variation in DNA left behind during contact, this DNA shedding propensity has an effect on whose DNA is detected. This study evaluated this variability using a cell staining approach. Volunteers were asked to deposit a fingerprint on a clean glass slide, then wash their hands and deposit a second fingerprint after a 30-minute wait without touching anything. Three sets of samples were collected over three consecutive weeks. Fingerprints were stained with a …


Probing The Role Of Astrocytes In The Pathology Of Fragile X Syndrome With Human Stem Cells, Baiyan Ren Dec 2021

Probing The Role Of Astrocytes In The Pathology Of Fragile X Syndrome With Human Stem Cells, Baiyan Ren

Theses & Dissertations

Fragile X syndrome (FXS) is an X-linked neurodevelopmental disorder related to intellectual disability and the most common monogenic cause of autism spectrum disorder. FXS is mainly caused by an expansion of CGG repeats in the 5’-untranslated region of fragile X mental retardation 1 (FMR1) gene, leading to the loss of expression of fragile X mental retardation protein (FMRP). Astrocytes are the most abundant glial cells in the central nervous system (CNS). Loss of FMRP in astrocytes has been found to contribute to structural and functional synaptic deficits in the Fmr1-KO mouse model. The contribution of human astrocytes, however, to the …


Usp11 And Usp7 Deubiquitinases Regulate Sprtn Auto-Proteolysis And Sprtn-Mediated Dna-Protein Crosslink Repair, Megan C. Perry Dec 2021

Usp11 And Usp7 Deubiquitinases Regulate Sprtn Auto-Proteolysis And Sprtn-Mediated Dna-Protein Crosslink Repair, Megan C. Perry

Theses & Dissertations

DNA repair pathways that recognize and remove damaged DNA are vital for maintenance of genomic stability and prevention of tumorigenesis. Conversely, these pathways may be robust in tumor cells, thus diminishing the anti-cancer potential of available therapies. DNA-protein crosslinks (DPCs) are particularly deleterious DNA adducts that occur when proteins become irreversibly covalently bound to the DNA. DPCs represent a diverse group of lesions, as any protein can be crosslinked to the DNA duplex by non-specific crosslinking agents like reactive aldehydes and radiation. Additionally, functional DNA-binding proteins such as topoisomerases may become permanently crosslinked to DNA ends by abortive enzymatic processes …


A Pkcα-Mediated Growth Suppressive Mek-Erk Signaling Axis In Intestinal Epithelial Cells, Navneet Kaur Dec 2021

A Pkcα-Mediated Growth Suppressive Mek-Erk Signaling Axis In Intestinal Epithelial Cells, Navneet Kaur

Theses & Dissertations

Members of the protein kinase C (PKC) family of serine/threonine kinases are involved in regulation of fundamental cellular functions, including proliferation, differentiation, survival, migration, and transformation. Increasing evidence points to anti-proliferative and tumor suppressive role of PKCs. Our laboratory and others have reported that the classical PKC isozyme, PKCαnegatively regulates proliferation and tumorigenesis in the intestinal epithelium. Our laboratory has further determined that PKCα signaling induces a program of cell cycle withdrawal in intestinal epithelial cells that involves downregulation of the pro-proliferative proteins, cyclin D1 and Id1, and upregulation of the cyclin dependent kinase (CDK) inhibitor, p21Cip1. Unexpectedly, …


Intrinsically Disordered Protein Regions In Human Evolution And As Therapeutic Targets, Karen Paco Mendivil Dec 2021

Intrinsically Disordered Protein Regions In Human Evolution And As Therapeutic Targets, Karen Paco Mendivil

KGI Theses and Dissertations

Intrinsically disordered proteins (IDPs) and IDP regions (IDPRs) fail to form stable structures but have important biological functions via interacting with various molecular partners (proteins, DNA, RNA, glycosaminoglycans). We hypothesized that IDPRs are potential targets for therapeutics development because they are reservoirs of evolutionary innovation, and they play crucial roles in adaptation to pathogens.

We first studied the evolution of IDPRs in the human proteome and compared it with the proteome of non-human primates. We have found that evolutionary young protein-coding genes have included low conserved regions in the N-terminal part of proteins, and such regions are linked to high …


Molecular Mechanisms Of Aberrant Protein Glycosylation In Pancreatic Cancer Stemness And Metastasis, Frank Leon Dec 2021

Molecular Mechanisms Of Aberrant Protein Glycosylation In Pancreatic Cancer Stemness And Metastasis, Frank Leon

Theses & Dissertations

A myriad of genetic and other abnormal changes underlies the aggressiveness and dissemination properties observed in pancreatic cancer (PC). Aberrant protein glycosylation is a commonly observed feature in PC. The modification of protein O-glycosylation is mediated by glycosyltransferases, which attach and sequentially elongate monosaccharides on Serine/Threonine (Ser/Thr) motifs. Aberrant glycosylation is recognized as an emerging hallmark of cancer where a disruption in normal glycosylation results in irregular O-glycans.

This dissertation research has investigated the consequences of aberrant protein glycosylation on stemness and enhancement of metastatic properties in pancreatic ductal adenocarcinoma (PDAC). Several publications have reported aberrant O-glycosylation increases in oncogenic …


The Effects Of Molecular Chaperone Modulation On Protein Folding, Prion Formation, And Prion Propagation In Saccharomyces Cerevisiae, Leeran Blythe Dublin Ryan Dec 2021

The Effects Of Molecular Chaperone Modulation On Protein Folding, Prion Formation, And Prion Propagation In Saccharomyces Cerevisiae, Leeran Blythe Dublin Ryan

Arts & Sciences Electronic Theses and Dissertations

Proper and efficient protein folding is vital for cell survival. Many factors affect protein folding fidelity and prion formation, including molecular chaperone availability and activity. Research has shown that modulating chaperone availability and function can affect protein misfolding and aggregation, as well as de novo prion formation and propagation. However, the factors involved and underlying mechanisms influencing prion formation and protein folding are largely unknown. The following work aims to elucidate these areas. The Nascent Polypeptide-Associated Complex (NAC) is the first point of chaperone contact for nascent polypeptides. Previous work has shown that disruption of the NAC leads to improved …


A Review Of Calcineurin Biophysics With Implications For Cardiac Physiology, Ryan B. Williams Dec 2021

A Review Of Calcineurin Biophysics With Implications For Cardiac Physiology, Ryan B. Williams

Theses and Dissertations

Calmodulin is a prevalent calcium sensing protein found in all cells. Three genes exist for calmodulin and all three of these genes encode for the exact same protein sequence. Recently mutations in the amino acid sequence of calmodulin have been identified in living human patients. Thus far, patients harboring these mutations in the calmodulin sequence have only displayed an altered cardiac related phenotype. Calcineurin is involved in many key physiological processes and its activity is regulated by calcium and calmodulin. In order to assess whether or not calcineurin contributes to calmodulinopathy (a pathological state arising from dysfunctional calmodulin), a comprehensive …


Computationally Modeling Dynamic Biological Systems, Katherine Jarvis Dec 2021

Computationally Modeling Dynamic Biological Systems, Katherine Jarvis

Electronic Theses and Dissertations

Modeling biological systems furthers our understanding of dynamic relationships and helps us make predictions of the unknown properties of the system. The simple interplay between individual species in a dynamic environment over time can be modeled by equation-based modeling or agent- based modeling (ABM). Equation based modeling describes the change in species quantity using ordinary differential equations (ODE) and is dependent on the quantity of other species in the system as well as a predetermined rates of change. Unfortunately, this method of modeling does not model each individual agent in each species over time so individual dynamics are assumed to …


Dissection Of The Genetic Architecture Of Grain Quality In Rice, Shuai Liu Dec 2021

Dissection Of The Genetic Architecture Of Grain Quality In Rice, Shuai Liu

Theses and Dissertations

Rice is an important human staple food for over half of the world’s population. Amylose content (AC), gelatinization temperature (GT), grain protein content (GPC), percentage grain chalkiness (PGC), and mineral content are important parameters for evaluating rice quality, which attracts customers and breeders. Only limited genes or QTLs (OsAAP6, OsGluA2, OsASN1, Chalk5, OsHMA3, etc.) are reported regulating rice GPC, PGC, and mineral content due to the lack of genetic knowledge and molecular markers. To dissect the genetic architecture of rice grain quality regulation, genome wide association studies (GWAS) were performed using two populations …


Granulins In Norm And Neurodegenerative Pathologies, Anukool Bhopatkar Dec 2021

Granulins In Norm And Neurodegenerative Pathologies, Anukool Bhopatkar

Dissertations

Granulins (GRNs) are small, cysteine-rich modules produced from the proteolytic cleavage of the precursor protein called progranulin (PGRN). GRNs are present in the form of seven tandem repeats within the precursor and are known to be produced in the extracellular and in lysosomal environments. In physiology, PGRN and GRNs plays pleiotropic roles such as neuronal growth and differentiation, immunomodulation, wound healing. Recent studies have implicated pathological role for PGRN in Alzheimer disease (AD) and frontotemporal dementia (FTD) but specific mechanism(s) remains unclear. However, potential interactions between GRNs and Ab42 and TDP-43 seem like a plausible underlying mechanism. Studies presented here …


Dicer Represses Antiviral Innate Immunity Pathways In Mouse Embryonic Stem Cells, Chandan Gurung Dec 2021

Dicer Represses Antiviral Innate Immunity Pathways In Mouse Embryonic Stem Cells, Chandan Gurung

Dissertations

Recent studies have demonstrated that embryonic stem cells (ESCs) are deficient in expressing type I interferons (IFN), the cytokines that play key roles in antiviral responses. However, the underlying molecular mechanisms and biological implications of this finding are poorly understood. In this study, I used a synthetic RNA-based assay that can simultaneously assess multiple forms of antiviral responses in ESCs. Dicer is an enzyme essential for RNA interference (RNAi), which is used as a major antiviral mechanism in invertebrates but not clear in vertebrates. RNAi activity is detected in wild-type ESCs but is abolished in Dicer knockout ESCs (D−/−ESCs) as …


A Temporal Analysis Of The Microbiota And Biofouling Development On Artificial Substrates In The Port Everglades Inlet, Florida, Denise Swack Dec 2021

A Temporal Analysis Of The Microbiota And Biofouling Development On Artificial Substrates In The Port Everglades Inlet, Florida, Denise Swack

All HCAS Student Capstones, Theses, and Dissertations

A pilot project was deployed in Port Everglades Inlet, Florida that aimed to evaluate the biofilm composing the microbiome on ecologically engineered artificial substrates used to build Coastal Marine Infrastructure. In April of 2017, an Articulated Concrete Block Mattress comprised of an ecological engineered concrete substrate and a standard smooth surface control substrates were compared. This study will provide a profile on the microbiome community on artificial substrates within Port Everglades Inlet on bio-enhancing concrete-based solutions in our Coastal Marine Infrastructure. To study the microbial community, the 16s rRNA technology was used in Illumina’s high-throughput DNA sequencing. Samples were collected …


Calmodulin Like 38 Is Required For Autophagy Of Hypoxia-Induced Cytoplasmic Rna Granules In Arabidopsis Thaliana, Sterling Field Dec 2021

Calmodulin Like 38 Is Required For Autophagy Of Hypoxia-Induced Cytoplasmic Rna Granules In Arabidopsis Thaliana, Sterling Field

Doctoral Dissertations

In response to the energy crisis resulting from submergence stress and hypoxia, the model plant Arabidopsis thaliana limits non-essential mRNA translation, and accumulates cytosolic stress granules. Stress granules are phase-separated mRNA-protein particles that partition transcripts for various fates: storage, degradation, or return to translation after stress alleviation. Another response by the plant cell to low oxygen stress is the induction of the turnover pathway autophagy. Stress granule regulation by autophagy occurs by a ‘granulophagy’ pathway in yeast and mammalian systems through which parts or whole stress granules are degraded. Whether this occurs in plants has not been investigated.

A connection …


Erecta Family Genes Regulate The Shoot Apical Meristem And Organ Formation, Daniel A. Degennaro Dec 2021

Erecta Family Genes Regulate The Shoot Apical Meristem And Organ Formation, Daniel A. Degennaro

Doctoral Dissertations

Plants are sessile and must adjust their organ growth to their environments. A reservoir of stem cells in the shoot apical meristem (SAM) supplies cells for differentiation into organs. The SAM must balance organ production with stem cell maintenance. The ERECTA family (ERfs) encodes the leucine-rich repeat receptor-like kinases ERECTA (ER), ERECTA-LIKE 1 (ERL1), and ERL2. ERf signaling regulates organ initiation and stem cell maintenance. Results presented in this work include the following:

1) WUSCHEL (WUS) and CLAVATA3 (CLV3) make up a negative feedback loop to maintain SAM size. WUS and CLV3 expression localization is critical for …


Microbial Community Dynamics Of A Microcystis Bloom, Helena Pound Dec 2021

Microbial Community Dynamics Of A Microcystis Bloom, Helena Pound

Doctoral Dissertations

Harmful algal bloom events are notoriously associated with massive economic and environmental consequences, causing wildlife and human health risks. As these blooms increase in occurrence, duration, and severity around the world, it is essential to understand conditions leading to bloom formation and why they persist. Abiotic factors such as nutrients are commonly considered in bloom dynamics, but biotic interactions with co-occurring microbial species and viruses must also be taken into account. Harmful algal blooms dominated by the cyanobacterial genus Microcystis occur in bodies of water around the world and provide an ideal system in which to study top-down controls on …


In Vitro Investigation Of Tumor Selective Piperidones As Therapeutic Agents Against Leukemia Cancer Cells, Lisett Contreras Dec 2021

In Vitro Investigation Of Tumor Selective Piperidones As Therapeutic Agents Against Leukemia Cancer Cells, Lisett Contreras

Open Access Theses & Dissertations

Cancer is a continuous global health issue. It is the second leading cause of death behind heart disease. Disparities across the emergence of cancer and resulting fatalities raise the importance of researching the disease. Treatments are available for certain types of cancers. However, these are typically accompanied by residual problems including side effects and the possibility for relapse. Some treatments attack all cells, leading to unwarranted side effects that make the possibility of living a comfortable life nearly impossible. Other treatments are specific to certain genetic alterations, making them only useful for a small percentage of patients. Not one treatment …


Mechanisms For Extracellular Matrix-Dependent Blood-Brain Barrier Dysfunction, Brian Adam Hoettels Dec 2021

Mechanisms For Extracellular Matrix-Dependent Blood-Brain Barrier Dysfunction, Brian Adam Hoettels

Boise State University Theses and Dissertations

Dysfunction of the blood vessels that form the blood-brain barrier (BBB) is observed across various neurological disorders, including multiple sclerosis (MS). As barrier loss culminates in neuronal dysfunction and degeneration, a better understanding of the mechanisms underlying BBB dysfunction is needed.

Tight junctions are multiprotein complexes maintained by the endothelial cells lining the inner blood vessel wall to seal the intercellular space, and their disruption impairs BBB function. In my first chapter, I focus on how tight junctions are altered in CNS inflammatory demyelinating diseases (CNS-IDDs) like MS as BBB dysfunction is one of the earliest known stages in …


Liposomes: Production And Applications For Controlled Drug Delivery, Gamid Abatchev Dec 2021

Liposomes: Production And Applications For Controlled Drug Delivery, Gamid Abatchev

Boise State University Theses and Dissertations

This dissertation recognizes the enormous potential presented by the ever-evolving development of liposomes as drug carriers and seeks to offer further investigation into their useful production and utilization. The first chapter presents the basic principles governing their formation by self-assembly in water solutions, briefly describes the most common production methods, and points out essential past advances that led to their use as drug carriers. Chapter two exemplifies production of liposomes by the traditional methods of extrusion and sonication, detailing passive and active loading, as well as physical characterization by Dynamic Light Scattering, microscopy imaging, and fluorescence spectroscopy. In the next …


Differentiating The Mechanistic Role And Chemotherapeutic Potential Of Src And Podoplanin In Oncogenic Transformation, Edward P. Retzbach Dec 2021

Differentiating The Mechanistic Role And Chemotherapeutic Potential Of Src And Podoplanin In Oncogenic Transformation, Edward P. Retzbach

Graduate School of Biomedical Sciences Theses and Dissertations

There were an estimated 20 million new cancer cases worldwide in 2020, resulting in nearly 1000 deaths per hour [1]. Oral cancer exemplifies the difficulties of treating cancer patients. The first line for oral cancer treatment is surgery and radiation that can lead to patient disfigurement and decreased quality of life in cancer survivors [2-4]. Though there have been many developments in chemotherapy in the last 30 years, the 50% mortality rate associated with oral cancer has not changed [4, 5]. Longitudinal studies that track survival rates in oral cancer patients demonstrate a 3-fold reduction in patient deaths when patients …


Site-Specific Effects Of Lysine Acetylation On Aminoacyl-Trna Synthetase, Hao Chen Dec 2021

Site-Specific Effects Of Lysine Acetylation On Aminoacyl-Trna Synthetase, Hao Chen

Graduate Theses and Dissertations

Aminoacyl-tRNA synthetases (AARSs) are an ancient and highly conserved family of enzymes which can catalyze a two-steps aminoacylation reaction to charge tRNAs with their cognate amino acids, thus playing crucial roles in ribosomal protein synthesis. Naturally, the accurate amino acids and tRNA recognition of these synthetases are essential to the fidelity of translation process. To assure the correct recognition, some of these synthetases have evolved with an editing function to help remove the mischarged tRNAs. In addition to these functions, AARSs are also involved in various biological processes ranging from transcription to translation. Currently, a series of proteomic studies have …


Investigating Therapeutic Strategies To Target Metabolic Vulnerabilities Of Nsclc Tumors With Mutant Keap1 Gene, Pranavi Koppula Dec 2021

Investigating Therapeutic Strategies To Target Metabolic Vulnerabilities Of Nsclc Tumors With Mutant Keap1 Gene, Pranavi Koppula

Dissertations & Theses (Open Access)

The metabolic vulnerability of cancers has long been envisaged as an attractive window to develop novel therapeutic strategies. Metabolic flexibility at the cellular level encompasses the efficient rerouting of anabolic and catabolic pathways in response to varying environmental stimuli to maintain cellular homeostasis and sustain proliferation. The primary objective of this study is to identify metabolic vulnerabilities bestowed by KEAP1/NRF2 signaling axis through SLC7A11. SLC7A11 is a transcriptional target of NRF2, an essential regulator of cellular anti-oxidant response. Under unstressed basal conditions, NRF2 interacts with KEAP1, a tumor suppressor gene and a substrate adaptor protein of the Cullin3-dependent ubiquitin ligase …


Engineering Fluorescently Labeled Human Fibroblast Growth Factor One Mutants And Characterizing Their Photophysics Properties Towards Designing Fret Assays, Mamello Mohale Dec 2021

Engineering Fluorescently Labeled Human Fibroblast Growth Factor One Mutants And Characterizing Their Photophysics Properties Towards Designing Fret Assays, Mamello Mohale

Graduate Theses and Dissertations

Human fibroblast growth factor one (hFGF1) belongs to a family of 22 FGF members produced by fibroblast cells. Cell signaling during physiological processes of angiogenesis and wound healing occurs when hFGF1 binds to its receptor (FGFR). However, when heterogenous homeostasis is not maintained, fibroblast cells exhibit excessive proliferation which can lead to a myriad of cancers. smFRET is an ultrasensitive distant dependent (1-10 nm) technique capable of resolving such heterogeneity in structural dynamics and binding affinities (Kd). Therefore, we successfully designed and characterized fluorescently labeled hFGF1 tracers which span the visible light region of the electromagnetic spectrum for use in …


Mechanisms Of Stress Survival In Gram Positive Bacterial Pathogens, Asia Poudel Dec 2021

Mechanisms Of Stress Survival In Gram Positive Bacterial Pathogens, Asia Poudel

Chemistry & Biochemistry Theses & Dissertations

Anaerobic Gram-positive bacteria are not a well-characterized group but include many human pathogens that are resilient against stresses caused by the human immune system or by antibiotic treatment. This dissertation investigated the survival mechanisms of two clinically relevant Gram-positive organisms, Clostridioides difficile and Cutibacterium acnes under extracellular stresses. The response of the opportunistic skin pathogen Cutibacterium acnes to nanosecond electric pulses is characterized and found that growth in a biofilm, which usually protects bacteria from stress, renders this species more killable by this treatment. In addition, the stringent response (SR), a conserved bacterial stress survival mechanism, is studied in the …


The Role Of The Erbb Signaling Pathway In Cardiovascular Progenitor Cell-Based Repair, Christopher Ramos Dec 2021

The Role Of The Erbb Signaling Pathway In Cardiovascular Progenitor Cell-Based Repair, Christopher Ramos

Electronic Theses, Projects, and Dissertations

Adult mammalian hearts lack self-renewal and proliferative capabilities necessary for cardiovascular regeneration. Current treatments using cardiac progenitor cells (CPCs) for cell-based repair do not restore cardiac function in patients who experience a myocardial infarction (MI). Our laboratory has been studying Islet-1+ neonatal CPCs as a promising candidate for cell-based repair due to their ability to significantly improve cardiac function after MI in sheep. The current study addresses the hypothesis that the ERBB pathway is linked to the Hippo-pathway to activate YAP1 by the involvement of an autocrine loop that upregulates neuregulin (NRG). In our sheep model of MI and cardiovascular …


Impact Of Pank1 Deletion On Mitochondrial Acetylation And Cardiac Function During Pressure Overload., Timothy N. Audam Dec 2021

Impact Of Pank1 Deletion On Mitochondrial Acetylation And Cardiac Function During Pressure Overload., Timothy N. Audam

Electronic Theses and Dissertations

Recent studies have associated elevated protein acetylation levels with heart failure in humans. Although mechanisms promoting elevated acetylation levels are not fully known, excess acetyl-CoA may drive enzyme-independent acetylation of cardiac proteins. Accumulation of acetyl-CoA depends on the availability of sufficient CoA, whose production is regulated by pantothenate kinases in the CoA biosynthetic pathway. We show that cardiac proteins are hyperacetylated during heart failure in humans and tested in mice whether limiting CoA abundance would improve ventricular remodeling during pressure overload-induced hypertrophy. We limited cardiac CoA levels by deleting the rate-limiting enzyme in CoA biosynthesis, Pank1 (one of three PANK-encoding …


Modulation Of The Receptor Gating Mechanism And Allosteric Communication In Ionotropic Glutamate Receptors, Nabina Paudyal, Nabina Paudyal Dec 2021

Modulation Of The Receptor Gating Mechanism And Allosteric Communication In Ionotropic Glutamate Receptors, Nabina Paudyal, Nabina Paudyal

Dissertations & Theses (Open Access)

Ionotropic glutamate receptors (iGluRs) found in mammalian brain are primarily known to mediate excitatory synaptic transmission crucial for learning and memory formation. The family of iGluRs consists of AMPA receptors, NMDA receptors and kainate receptors with each member having distinct physiological role. In the recent years, significant progress has been made in understanding the biophysical, and functional properties of iGluRs. The development of Cryo-EM and X-Ray crystallography techniques have further facilitated in the structural understanding of these receptors. However, the multidomain nature, large size of the protein, complex gating mechanism and inadequate knowledge regarding the conformational dynamics of the receptors …


Deciphering The Role Of Hsp110 Chaperones In Diseases Of Protein Misfolding, Unekwu M. Yakubu Dec 2021

Deciphering The Role Of Hsp110 Chaperones In Diseases Of Protein Misfolding, Unekwu M. Yakubu

Dissertations & Theses (Open Access)

Molecular chaperones maintain protein homeostasis (proteostasis) by ensuring the proper folding of polypeptides. Loss of proteostasis has been linked to the onset of numerous neurodegenerative disorders including Alzheimer’s, Parkinson’s, and Huntington’s disease. Hsp110 is a member of the Hsp70 class of molecular chaperones and acts as a nucleotide exchange factor (NEF) for Hsp70, the preeminent Hsp70-family protein folding chaperone. Hsp110 promotes rapid cycling of ADP for ATP, allowing Hsp70 to properly fold nascent or unfolded polypeptides in iterative cycles. In addition to its NEF activity, Hsp110 possesses an Hsp70-like substrate binding domain (SBD) whose biological roles are undefined. Previous work …


Molecular Mechanisms Underlying The Suppression Of Cardiomyocyte Necroptosis By The Cop9 Signalosome In Mice, Megan T. Lewno Dec 2021

Molecular Mechanisms Underlying The Suppression Of Cardiomyocyte Necroptosis By The Cop9 Signalosome In Mice, Megan T. Lewno

Dissertations and Theses

Background: Within a large subset of heart failure, cardiac ubiquitin-proteasome system (UPS) inadequacy is causative. A vital UPS regulator is the COP9 signalosome (CSN). The CSN holocomplex is formed by 8 unique protein subunits (COPS1~COPS8) and regulates Cullin-RING ligases via Cullin deneddylation. Cardiomyocyte-restricted knockout (cko) of Cops8 causes massive cardiomyocyte necroptosis via the RIPK1-RIPK3-MLKL pathway, resulting in dilated cardiomyopathy (DCM) and shortened lifespan in mice. CSN’s deneddylase resides in COPS5 and Cops5-cko has not been explored. It is important to investigate how the necroptotic pathway within cardiomyocytes is activated in Cops8-cko mice as cardiomyocyte necroptosis has been shown to play …


Role Of The Nuclear Envelope In The Mechanoregulation Adipogenesis, Matthew H. Goelzer Dec 2021

Role Of The Nuclear Envelope In The Mechanoregulation Adipogenesis, Matthew H. Goelzer

Boise State University Theses and Dissertations

Mechanical signals are known regulators of mesenchymal stem cell (MSC) fate, regulating their differentiation into osteoblasts, chondrocytes, and adipocytes. These relevant mechanical signals reach to nucleus through nuclear envelope proteins such as Lamin A/C and the Linker of the Nucleoskeleton and Cytoskeleton (LINC) complexes. Within the context of bone, clinically relevant mutations of Lamin A/C and the LINC complexes have been shown to alter adipogenic and osteogenic MSC differentiation patterns, suggesting that that nucleo-cytoskeletal connectivity provided by nuclear envelope is important in regulating MSC fate. Using MSC adipogenesis as a model of MSC mechanical regulation, the goal of this work …