Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 94

Full-Text Articles in Life Sciences

Towards A New Role Of Mitochondrial Hydrogen Peroxide In Synaptic Function, Cliyahnelle Z. Alexander May 2024

Towards A New Role Of Mitochondrial Hydrogen Peroxide In Synaptic Function, Cliyahnelle Z. Alexander

Student Theses and Dissertations

Aerobic metabolism is known to generate damaging ROS, particularly hydrogen peroxide. Reactive oxygen species (ROS) are highly reactive molecules containing oxygen that have the potential to cause damage to cells and tissues in the body. ROS are highly reactive atoms or molecules that rapidly interact with other molecules within a cell. Intracellular accumulation can result in oxidative damage, dysfunction, and cell death. Due to the limitations of H2O2 (hydrogen peroxide) detectors, other impacts of ROS exposure may have been missed. HyPer7, a genetically encoded sensor, measures hydrogen peroxide emissions precisely and sensitively, even at sublethal levels, during …


Pipecolic Acid And Novel Insights Into Cerebral Malaria, Akua E. Mensah May 2024

Pipecolic Acid And Novel Insights Into Cerebral Malaria, Akua E. Mensah

Theses

Cerebral malaria (CM), a severe manifestation of Plasmodium infection, prompts our investigation into the nuanced role of pipecolic acid in its pathophysiology. To unravel the molecular intricacies, we conducted in vitro lysine labeling techniques of mice infected with P. berghei ANKA parasites, and human P. falciparum grown in vitro, aiming to discern the impact of Plasmodium on pipecolic acid production. Previous observations indicated an elevation in pipecolic acid levels correlating with neurological decline in children with CM. In our study, confirming elevated pipecolic acid presence in the plasma and brain tissues of CM patients and the animal model of CM, …


Extraction Of Challenging Forensic Samples Using The Microgem Dna Extraction Kit, Falyn R. Vega Jun 2023

Extraction Of Challenging Forensic Samples Using The Microgem Dna Extraction Kit, Falyn R. Vega

Student Theses

In forensic science, DNA extraction can be a tedious and resource-intensive process. Extraction with Proteinase K is an industry standard but has its drawbacks, such as requiring multiple ionic detergents and washing steps. MicroGEM has developed a new enzyme called forensicGEM that is temperature-dependent and compatible with mesophilic enzymes, offering complete DNA extraction in about 20 minutes in a single tube, limiting contamination, loss of sample, and working time. ForensicGEM can extract DNA from highly degraded samples, potentially leading to more complete STR profiles. Highly degraded tissue and bone samples were collected and extracted with the forensicGEM …


Csi Botany: Dna Barcode “Fingerprints” Identify Cryptic Urban Flora, Luis R. Vega Jan 2023

Csi Botany: Dna Barcode “Fingerprints” Identify Cryptic Urban Flora, Luis R. Vega

Theses

As short genomic markers, DNA barcodes can play a role in conservation by identifying cryptic species and hybrids when morphological approaches fall short. Here we present our application of barcodes to the identities of two wetland taxa as part of an ongoing floristic inventory of Van Cortlandt Park (VCP), Bronx, NY. Previous barcode data by Marriott et al. (2018) identified the VCP lake water lily as the exotic Nymphaea alba, rather than the native N. odorata as historically described. In addition, cattails in the park were historically identified as the native Typha latifolia and the exotic T. angustifolia …


Determining The Roles Of The Oligomerization And C-Terminal Domains In Mutant P53 Gain-Of-Function Activities, George K. Annor Sep 2022

Determining The Roles Of The Oligomerization And C-Terminal Domains In Mutant P53 Gain-Of-Function Activities, George K. Annor

Dissertations, Theses, and Capstone Projects

The tumor suppressor p53 (TP53) gene is often mutated in cancer, with missense mutations found in the central DNA binding domain, and less often in the oligomerization domain (OD) and C-terminal domain (CTD). The OD and CTD have been found to be critical for the tumor suppressor functionality of wild-type p53 (wtp53). Specific missense mutations in the DNA binding domain have been found to confer new gain-of-function (GOF) activities. Mutations that destabilize tetramer formation, or deletion of key lysine residues within the CTD, downregulate the ability of wtp53 to transactivate (increase the rate of transcription of) its target …


Signature Peptide Identification For Body Fluids In Sexual Assault Cases By Liquid Chromatography Tandem Mass Spectrometry (Lc-Ms/Ms), Kelci Somers Jun 2022

Signature Peptide Identification For Body Fluids In Sexual Assault Cases By Liquid Chromatography Tandem Mass Spectrometry (Lc-Ms/Ms), Kelci Somers

Student Theses

Body fluids contain proteins that perform functions specific to different types of body fluids. Therefore, the detection of signature peptides for these proteins can potentially identify a body fluid in a forensic investigation. This project aimed to validate a method to detect signature peptides in body fluids commonly found in sexual assault cases by LC-MS/MS. Signature peptides for semen and saliva fluids were combined with two signature peptides for vaginal fluids. Samples created using two donors each for saliva, semen, and vaginal fluids were extracted using a trypsin digest, with separation of the protein and DNA fractions. The LC-MS/MS was …


Cdc6 Is Sequentially Regulated By Pp2a-Cdc55, Cdc14, And Sic1 For Origin Licensing In S. Cerevisiae, Jasmin Philip Jun 2022

Cdc6 Is Sequentially Regulated By Pp2a-Cdc55, Cdc14, And Sic1 For Origin Licensing In S. Cerevisiae, Jasmin Philip

Dissertations, Theses, and Capstone Projects

Control of DNA replication is critical for progression of the cell cycle and genomic stability. Cyclin-dependent kinases (CDKs) coordinate numerous phosphorylation events to accomplish two biological tasks for all living organisms: DNA replication and cell division. One CDK, Cyclin-Cdc28, is responsible for cell cycle progression in budding yeast. DNA replication requires a stepwise assembly of the pre-replicative complex on DNA, including Orc1-6, Cdc6, Cdt1 and Mcm2-7, during M-G1 phase. Cdc6 contains eight Cdc28 consensus sites, SP or TP motifs. Clb5-Cdc28 phosphorylates Cdc6-T7 to recruit Cks1, the Cdc28 phospho-adaptor, for subsequent multisite phosphorylation during S phase. There are two phospho-degrons at …


Elucidating Mechanisms Of Biofluorescence And Bioluminescence In Marine Organisms, Andrew M. Guarnaccia Jun 2022

Elucidating Mechanisms Of Biofluorescence And Bioluminescence In Marine Organisms, Andrew M. Guarnaccia

Dissertations, Theses, and Capstone Projects

Biofluorescence and bioluminescence are two methods of light emission that entail separate mechanisms of action but end at the same process: a colorful display that have tremendous ecological and behavioral benefits, whether it be used to communicate with conspecifics, camouflage into a multicolored background, attract unsuspecting prey, or alert others to a predator. In biofluorescence, higher-energy, shorter wavelength light is absorbed then re-emitted as lower-energy, longer-wavelength light. Bioluminescence on the other hand entails a chemical reaction in which a small molecule is oxidized by an enzyme, creating a high-energy intermediate that sheds the excess energy in the form of visible …


Eukaryotic Initiation Factor 4e (Eif4e) In Complex With Eif4e Binding Protein 1 (4e-Bp1) Binds With Higher Affinity To M7gpppn Cap Of A Subset Of Human Mrnas, Izza F. Nawaz Apr 2022

Eukaryotic Initiation Factor 4e (Eif4e) In Complex With Eif4e Binding Protein 1 (4e-Bp1) Binds With Higher Affinity To M7gpppn Cap Of A Subset Of Human Mrnas, Izza F. Nawaz

Theses and Dissertations

Fluorescence anisotropy binding assays were used to analyze the binding of eIF4E in complex with 4E-BP1 onto the 5’ m7G cap of a subset of mRNA that are known to carry cap-independent translation. These studies suggest that 4E-BP1 increases eIF4E binding affinity to 5’cap of both FGF-9 and HIF-1𝝰.


Scientific Development Of An Integrated Workflow For Latent Print, Questioned Document, And Dna Processing Of Paper Evidence, Ashley Morgan Feb 2022

Scientific Development Of An Integrated Workflow For Latent Print, Questioned Document, And Dna Processing Of Paper Evidence, Ashley Morgan

Dissertations, Theses, and Capstone Projects

Touch paper evidence could be the source of probative human DNA but recovery is challenging and forensic laboratories instead prioritize processing by the Latent Print and Questioned Document disciplines. Recent advances in DNA collection methods and the increased sensitivity of STR typing kits have improved success rates for DNA testing of paper evidence; but prior to implementing DNA collection, laboratories have to decide in which order to examine paper for the different types of forensic evidence. This thesis developed and tested a multi-discipline workflow for processing paper evidence by DNA, Latent Prints and Questioned Documents experts. Preliminary sampling studies indicated …


Paddling Along The Voltage Gated Sodium Channel Galaxy With Sea Anemone Toxins: Structural Studies Of The Interaction Between The Paddle Motif From Nav1.5div And Sea Anemone Toxin, Adel K. Hussein Feb 2022

Paddling Along The Voltage Gated Sodium Channel Galaxy With Sea Anemone Toxins: Structural Studies Of The Interaction Between The Paddle Motif From Nav1.5div And Sea Anemone Toxin, Adel K. Hussein

Dissertations, Theses, and Capstone Projects

Voltage gated sodium channels (VGSC) are membrane proteins that serve an important function in the central nervous system (CNS), peripheral nervous system (PNS), and cardiac muscles amongst others. The main function of VGSC is in the propagation of electrical signals by depolarizing excitable cells. Nine mammalian VGSC subtypes have been characterized, NaV1.1 – NaV1.9, that are expressed in a tissue specific manner, each with unique gating properties. Numerous diseases have been linked to defects in VGSC including epilepsy, mental retardation, long QT syndrome, and Brugada disease. Furthermore, these channels are one of the primary targets of …


Glycocalyx Mechanotransduction Mechanisms Are Involved In Renal Cancer Metastasis, Heriberto Moran, Limary M. Cancel, Peigen Huang, Sylvie Roberge, Tuoye Xu, John M. Tarbell, Lance L. Munn Jan 2022

Glycocalyx Mechanotransduction Mechanisms Are Involved In Renal Cancer Metastasis, Heriberto Moran, Limary M. Cancel, Peigen Huang, Sylvie Roberge, Tuoye Xu, John M. Tarbell, Lance L. Munn

Publications and Research

Mammalian cells, including cancer cells, are covered by a surface layer containing cell bound proteoglycans, glycoproteins, associated glycosaminoglycans and bound proteins that is commonly referred to as the glycocalyx. Solid tumors also have a dynamic fluid microenvironment with elevated interstitial flow. In the present work we further investigate the hypothesis that interstitial flow is sensed by the tumor glycocalyx leading to activation of cell motility and metastasis. Using a highly metastatic renal carcinoma cell line (SN12L1) and its low metastatic counterpart (SN12C) we demonstrate in vitro that the small molecule Suberoylanilide Hydroxamic Acid (SAHA) inhibits the heparan sulfate synthesis enzyme …


Reproducibility Of Individual Dna Deposits Detected Through Cellular Fluorescence, Natalee Small-Davidson Dec 2021

Reproducibility Of Individual Dna Deposits Detected Through Cellular Fluorescence, Natalee Small-Davidson

Student Theses

Contact traces are an important part of DNA casework, but the probative value of any identified associations depends on the possibility of passive transfer. There is known individual variation in DNA left behind during contact, this DNA shedding propensity has an effect on whose DNA is detected. This study evaluated this variability using a cell staining approach. Volunteers were asked to deposit a fingerprint on a clean glass slide, then wash their hands and deposit a second fingerprint after a 30-minute wait without touching anything. Three sets of samples were collected over three consecutive weeks. Fingerprints were stained with a …


High-Resolution Cryo-Electron Microscopy Structure Of Photosystem Ii From The Mesophilic Cyanobacterium, Synechocystis Sp. Pcc 6803, Christopher J. Gisriel, Jimin Wang, Jinchan Liu, David A. Flesher, Krystle M. Reiss, Hao-Li Huang, Ke R. Yang, William H. Armstrong, M. R. Gunner, Victor S. Batista, Richard J. Debus, Gary W. Brudvig Dec 2021

High-Resolution Cryo-Electron Microscopy Structure Of Photosystem Ii From The Mesophilic Cyanobacterium, Synechocystis Sp. Pcc 6803, Christopher J. Gisriel, Jimin Wang, Jinchan Liu, David A. Flesher, Krystle M. Reiss, Hao-Li Huang, Ke R. Yang, William H. Armstrong, M. R. Gunner, Victor S. Batista, Richard J. Debus, Gary W. Brudvig

Publications and Research

Photosystem II (PSII) enables global-scale, light-driven water oxidation. Genetic manipulation of PSII from the mesophilic cyanobacterium Synechocystis sp. PCC 6803 has provided insights into the mechanism of water oxidation; however, the lack of a highresolution structure of oxygen-evolving PSII from this organism has limited the interpretation of biophysical data to models based on structures of thermophilic cyanobacterial PSII. Here, we report the cryo-electron microscopy structure of PSII from Synechocystis sp. PCC 6803 at 1.93-Å resolution. A number of differences are observed relative to thermophilic PSII structures, including the following: the extrinsic subunit PsbQ is maintained, the C terminus of the …


Cryptococcus Neoformans Melanization Incorporates Multiple Catecholamines To Produce Polytypic Melanin, Rosanna P. Baker, Christine Chrissian, Ruth E. Stark, Arturo Casadevall Dec 2021

Cryptococcus Neoformans Melanization Incorporates Multiple Catecholamines To Produce Polytypic Melanin, Rosanna P. Baker, Christine Chrissian, Ruth E. Stark, Arturo Casadevall

Publications and Research

Melanin is a major virulence factor in pathogenic fungi that enhances the ability of fungal cells to resist immune clearance. Cryptococcus neoformans is an important human pathogenic fungus that synthesizes melanin from exogenous tissue catecholamine precursors during infection, but the type of melanin made in cryptococcal meningoencephalitis is unknown. We analyzed the efficacy of various catecholamines found in brain tissue in supporting melanization using animal brain tissue and synthetic catecholamine mixtures reflecting brain tissue proportions. Solid-state NMR spectra of the melanin pigment produced from such mixtures yielded more melanin than expected if only the preferred constituent dopamine had been incorporated, …


Structure Of A Monomeric Photosystem Ii Core Complex From A Cyanobacterium Acclimated To Far-Red Light Reveals The Functions Of Chlorophylls D And F, Christopher J. Gisriel, Gaozhong Shen, Ming-Yang Ho, Vasily Kurashov, David A. Flesher, Jimin Wang, William H. Armstrong, John H. Golbeck, Marilyn R. Gunner, David J. Vinyard, Richard J. Debus, Gary W. Brudvig, Donald A. Bryant Nov 2021

Structure Of A Monomeric Photosystem Ii Core Complex From A Cyanobacterium Acclimated To Far-Red Light Reveals The Functions Of Chlorophylls D And F, Christopher J. Gisriel, Gaozhong Shen, Ming-Yang Ho, Vasily Kurashov, David A. Flesher, Jimin Wang, William H. Armstrong, John H. Golbeck, Marilyn R. Gunner, David J. Vinyard, Richard J. Debus, Gary W. Brudvig, Donald A. Bryant

Publications and Research

Far-red light (FRL) photoacclimation in cyanobacteria provides a selective growth advantage for some terrestrial cyanobacteria by expanding the range of photosynthetically active radiation to include far-red/near-infrared light (700–800 nm). During this photoacclimation process, photosystem II (PSII), the water:plastoquinone photooxidoreductase involved in oxygenic photosynthesis, is modified. The resulting FRL-PSII is comprised of FRL-specific core subunits and binds chlorophyll (Chl) d and Chl f molecules in place of several of the Chl a molecules found when cells are grown in visible light. These new Chls effectively lower the energy canonically thought to define the “red limit” for light required to drive photochemical …


Cryo-Em Structure Of Mechanosensitive Channel Ynai Using Sma2000: Challenges And Opportunities, Claudio Catalano, Danya Ben-Hail, Weihua Qiu, Paul Blount, Amedee Des Georges, Youzhong Guo Oct 2021

Cryo-Em Structure Of Mechanosensitive Channel Ynai Using Sma2000: Challenges And Opportunities, Claudio Catalano, Danya Ben-Hail, Weihua Qiu, Paul Blount, Amedee Des Georges, Youzhong Guo

Publications and Research

Mechanosensitive channels respond to mechanical forces exerted on the cell membrane and play vital roles in regulating the chemical equilibrium within cells and their environment. Highresolution structural information is required to understand the gating mechanisms of mechanosensitive channels. Protein-lipid interactions are essential for the structural and functional integrity of mechanosensitive channels, but detergents cannot maintain the crucial native lipid environment for purified mechanosensitive channels. Recently, detergent-free systems have emerged as alternatives for membrane protein structural biology. This report shows that while membrane-active polymer, SMA2000, could retain some native cell membrane lipids on the transmembrane domain of the mechanosensitive-like YnaI channel, …


A Conserved Structural Role For The Walker-A Lysine In P-Loop Containing Kinases, Fatlum Hajredini, Ranajeet Ghose Oct 2021

A Conserved Structural Role For The Walker-A Lysine In P-Loop Containing Kinases, Fatlum Hajredini, Ranajeet Ghose

Publications and Research

Bacterial tyrosine kinases (BY-kinases) and shikimate kinases (SKs) comprise two structurally divergent P-loop containing enzyme families that share similar catalytic site geometries, most notably with respect to their Walker-A, Walker-B, and DxD motifs. We had previously demonstrated that in BY-kinases, a specific interaction between the Walker-A and Walker-B motifs, driven by the conserved “catalytic” lysine housed on the former, leads to a conformation that is unable to efficiently coordinate Mg2+•ATP and is therefore incapable of chemistry. Here, using enhanced sampling molecular dynamics simulations, we demonstrate that structurally similar interactions between the Walker-A and Walker-B motifs, also mediated by …


Aurora Kinase A Inhibition Reverses The Warburg Effect And Elicits Unique Metabolic Vulnerabilities In Glioblastoma, Trang T. T. Nguyen, Enyuan Shang, Chang Shu, Sungsoo Kim, Angeliki Mela, Nelson Humala, Aayushi Mahajan, Hee Won Yang, Hasan Orhan Akman, Catarina M. Quinzii, Guoan Zhang, Mike-Andrew Westhoff, Georg Karpel-Massler, Jeffrey N. Bruce, Peter Canoll, Markus D. Siegelin Sep 2021

Aurora Kinase A Inhibition Reverses The Warburg Effect And Elicits Unique Metabolic Vulnerabilities In Glioblastoma, Trang T. T. Nguyen, Enyuan Shang, Chang Shu, Sungsoo Kim, Angeliki Mela, Nelson Humala, Aayushi Mahajan, Hee Won Yang, Hasan Orhan Akman, Catarina M. Quinzii, Guoan Zhang, Mike-Andrew Westhoff, Georg Karpel-Massler, Jeffrey N. Bruce, Peter Canoll, Markus D. Siegelin

Publications and Research

Aurora kinase A (AURKA) has emerged as a drug target for glioblastoma (GBM). However, resistance to therapy remains a critical issue. By integration of transcriptome, chromatin immunoprecipitation sequencing (CHIP-seq), Assay for Transposase-Accessible Chromatin sequencing (ATAC-seq), proteomic and metabolite screening followed by carbon tracing and extracellular flux analyses we show that genetic and pharmacological AURKA inhibition elicits metabolic reprogramming mediated by inhibition of MYC targets and concomitant activation of Peroxisome Proliferator Activated Receptor Alpha (PPARA) signaling. While glycolysis is suppressed by AURKA inhibition, we note an increase in the oxygen consumption rate fueled by enhanced fatty acid oxidation (FAO), which was …


Dual Control Of One Component Signaling: Mechanistic And Structural Insights Into El222 Active States, Uthama Phani R. Edupuganti Sep 2021

Dual Control Of One Component Signaling: Mechanistic And Structural Insights Into El222 Active States, Uthama Phani R. Edupuganti

Dissertations, Theses, and Capstone Projects

Photoreceptors play a crucial role in signal transduction as specialized proteins which sense light as environmental stimuli and transduce the signal to control of downstream functions. Here we focus our attention on one class of these proteins, the Light-Oxygen-Voltage (LOV) domain, which is sensitive to blue light via an internally-bound flavin chromophore. Since their initial discovery in plant phototropins, many details of their photochemistry, chromophore interactions, and use with a diverse set of functional effectors have been described. However, several key details, especially a comprehensive understanding of signaling mechanism and its regulation, still remain elusive due in part to the …


Understanding The Influence Of Zinc On Grain Cadmium Accumulation And Bioaccessibility In Rice, Michael A. Tavarez Sep 2021

Understanding The Influence Of Zinc On Grain Cadmium Accumulation And Bioaccessibility In Rice, Michael A. Tavarez

Dissertations, Theses, and Capstone Projects

The effect of cadmium and zinc on mineral concentrations in three cultivars of rice

Interactions between the essential mineral zinc (Zn) and the toxic heavy metal cadmium (Cd) play an important role in regulating transport of both minerals to rice grains. Understanding these interactions is crucial for limiting cadmium and increasing zinc transfer to the food chain. Previous studies on the matter have had conflicting results suggesting synergistic and antagonistic relationships between the minerals. The goal of this work was to identify the effect of external cadmium and zinc on the uptake and translocation of both minerals from roots to …


Oxydifficidin-Producing Bacillus Presents Novel Antimicrobial Activity Against Neisseria Gonorrhoeae Involving The Deda Protein, Jingbo Kan Sep 2021

Oxydifficidin-Producing Bacillus Presents Novel Antimicrobial Activity Against Neisseria Gonorrhoeae Involving The Deda Protein, Jingbo Kan

Dissertations, Theses, and Capstone Projects

Bacterial human pathogens cause severe infectious diseases which are the second most common cause of death next to cancer and cardiovascular diseases in the world, especially in developing countries. Gonorrhea particularly, is the second most common sexually transmitted infection (STI) which is caused by the microorganism Neisseria gonorrhoeae (GC). Centers for Disease Control and Prevention (CDC) estimates that more than 1.6 million new gonorrhea cases emerged in USA in 2018 (“Detailed STD Facts - Gonorrhea” n.d.). Also, the WHO (World Health Organization) shows that gonorrhea is the most antibiotic resistant STI (“PAHO/WHO | Gonorrhea” n.d.), highlighting the shortage of efficient …


Study Of The Gain-Of-Function Mutant P53 And Parp1 In Triple-Negative Breast Cancer, Devon Lundine Sep 2021

Study Of The Gain-Of-Function Mutant P53 And Parp1 In Triple-Negative Breast Cancer, Devon Lundine

Dissertations, Theses, and Capstone Projects

Cancer cells often lose expression of the p53 protein or express mutant forms of p53. Some of these mutant p53 proteins, called gain-of-function mutant p53, have gained oncogenic functions. Previously, our group observed mutant p53 R273H interacts with replicating DNA and upregulates the chromatin localization of several DNA replication factors including PCNA, MCM2-7, and PARP1 (termed the mtp53-PARP-MCM axis). In this thesis, we explore the contribution of mutant p53 and PARP1 in castration-resistant prostate cancer (mutant p53 P223L and V274F) and triple-negative breast cancer (mutant p53 R273H). In the castration-resistant prostate cancer cell line DU145, we examine two mutant p53 …


The Structural And Functional Role Of Photosensing In Rgs-Lov Proteins, Zaynab Jaber Sep 2021

The Structural And Functional Role Of Photosensing In Rgs-Lov Proteins, Zaynab Jaber

Dissertations, Theses, and Capstone Projects

Light provides organisms with energy and spatiotemporal information. To survive and adapt, organisms have developed the ability to sense light to drive biochemical effects that underlie vision, entrainment of circadian rhythm, stress response, virulence, and many other important molecularly driven responses. Blue-light sensing Light-Oxygen-Voltage (LOV) domains are ubiquitous across multiple kingdoms of life and modulate various physiological events via diverse effector domains. Using a small molecule flavin chromophore, the LOV domain undergoes light-dependent structural changes leading to activation or repression of these catalytic and non-catalytic effectors. In silico analyses of high-throughput genomic sequencing data has led to the marked expansion …


Decoding The Roles Of Astrocytes And Hedgehog Signaling In Medulloblastoma, Terence Teixeira Duarte, Silvia Aparecida Teixeira, Luis Gonzalez-Reyes, Rui Manuel Reis Aug 2021

Decoding The Roles Of Astrocytes And Hedgehog Signaling In Medulloblastoma, Terence Teixeira Duarte, Silvia Aparecida Teixeira, Luis Gonzalez-Reyes, Rui Manuel Reis

Publications and Research

The molecular evolution of medulloblastoma is more complex than previously imagined, as emerging evidence suggests that multiple interactions between the tumor cells and components of the tumor microenvironment (TME) are important for tumor promotion and progression. The identification of several molecular networks within the TME, which interact with tumoral cells, has provided new clues to understand the tumorigenic roles of many TME components as well as potential therapeutic targets. In this review, we discuss the most recent studies regarding the roles of astrocytes in supporting sonic hedgehog (SHH) subgroup medulloblastoma (MB) and provide an overview of MB progression through SHH …


Protein Motifs For Proton Transfers That Build The Transmembrane Proton Gradient, Divya Kaur, Umesh Khaniya, Yingying Zhang, M. R. Gunner Jun 2021

Protein Motifs For Proton Transfers That Build The Transmembrane Proton Gradient, Divya Kaur, Umesh Khaniya, Yingying Zhang, M. R. Gunner

Publications and Research

Biological membranes are barriers to polar molecules, so membrane embedded proteins control the transfers between cellular compartments. Protein controlled transport moves substrates and activates cellular signaling cascades. In addition, the electrochemical gradient across mitochondrial, bacterial and chloroplast membranes, is a key source of stored cellular energy. This is generated by electron, proton and ion transfers through proteins. The gradient is used to fuel ATP synthesis and to drive active transport. Here the mechanisms by which protons move into the buried active sites of Photosystem II (PSII), bacterial RCs (bRCs) and through the proton pumps, Bacteriorhodopsin (bR), Complex I and Cytochrome …


Mitochondrial Distribution Of Glycine Receptors In Motor Neuron Cell Lines, Katsiaryna Milashevich May 2021

Mitochondrial Distribution Of Glycine Receptors In Motor Neuron Cell Lines, Katsiaryna Milashevich

Student Theses and Dissertations

Although non-essential, glycine plays an important role in major metabolic reactions and is most known for its anti-inflammatory effects. An accumulation of contemporary research has shown that glycine is able to stabilize membrane potential using glycine receptors at the cellular level and to protect mitochondrial function directly, whether it is from inflammation, heavy metal poisoning, or ischemia-induced neuroinflammation. In this research, the existence of a hypothetical mitochondrial glycine receptor is examined. Immunofluorescence imaging was used to examine the presence of the glycine receptor subunits alpha 1 and alpha 2 in both non- differentiated and differentiated neuroblastoma cell lines. The preliminary …


Determination Of Human Shedding Propensity Based On Str Results, Genevieve Trapani May 2021

Determination Of Human Shedding Propensity Based On Str Results, Genevieve Trapani

Student Theses

Trace DNA evidence may be discovered at a crime scene after having been deposited by a person of interest via active or passive transfer. Based on previous studies, passive transfer of one’s DNA is influenced by their shedding propensity, or probability of depositing a detectable amount of DNA through touch. Determining the shedding propensity of a person of interest can aid in trace DNA interpretation in forensic casework. This study explored STR profile quality and the presence of a DNA mixture for different skin surface locations, including fingertips before and after handwashing. As expected, unwashed fingers showed a higher prevalence …


Lighting The Way: Recent Insights Into The Structure And Regulation Of Phototropin Blue Light Receptors, Jaynee E. Hart, Kevin H. Gardner Mar 2021

Lighting The Way: Recent Insights Into The Structure And Regulation Of Phototropin Blue Light Receptors, Jaynee E. Hart, Kevin H. Gardner

Publications and Research

The phototropins (phots) are light-activated kinases that are critical for plant physiology and the many diverse optogenetic tools that they have inspired. Phototropins combine two bluelight- sensing Light–Oxygen–Voltage (LOV) domains (LOV1 and LOV2) and a C-terminal serine/threonine kinase domain, using the LOV domains to control the catalytic activity of the kinase. While much is known about the structure and photochemistry of the light-perceiving LOV domains, particularly in how activation of the LOV2 domain triggers the unfolding of alpha helices that communicate the light signal to the kinase domain, many questions about phot structure and mechanism remain. Recent studies have made …


Direct Recruitment Of Eif4gi And/Dap5 To The 5' Utr Of A Subset Of Human Mrna Drives Their Cap-Independent Translation, Solomon A. Haizel Feb 2021

Direct Recruitment Of Eif4gi And/Dap5 To The 5' Utr Of A Subset Of Human Mrna Drives Their Cap-Independent Translation, Solomon A. Haizel

Dissertations, Theses, and Capstone Projects

During unfavorable cellular conditions (e.g., tumor hypoxia, viral infection, nutrient deprivation, etc.), the canonical, cap-dependent translation initiation pathway in human cells is suppressed by sequestration of the cap-binding protein, eukaryotic initiation factor(eIF) 4E, by 4E-binding proteins. Circumvention of cap-dependent translation shutdown has been linked to tumor development and cancer progression. The stress-induced repression of cap-dependent translation has also been correlated with increased eIF4GI and its homolog, Death Associated Protein 5 (DAP5) expression levels, suggesting these factors have a role in cap-independent translation. Despite several evidence pointing towards a link upregulation of eIF4GI and /DAP5 levels during stress conditions, and the …