Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Life Sciences

Mechanisms For Extracellular Matrix-Dependent Blood-Brain Barrier Dysfunction, Brian Adam Hoettels Dec 2021

Mechanisms For Extracellular Matrix-Dependent Blood-Brain Barrier Dysfunction, Brian Adam Hoettels

Boise State University Theses and Dissertations

Dysfunction of the blood vessels that form the blood-brain barrier (BBB) is observed across various neurological disorders, including multiple sclerosis (MS). As barrier loss culminates in neuronal dysfunction and degeneration, a better understanding of the mechanisms underlying BBB dysfunction is needed.

Tight junctions are multiprotein complexes maintained by the endothelial cells lining the inner blood vessel wall to seal the intercellular space, and their disruption impairs BBB function. In my first chapter, I focus on how tight junctions are altered in CNS inflammatory demyelinating diseases (CNS-IDDs) like MS as BBB dysfunction is one of the earliest known stages in …


Liposomes: Production And Applications For Controlled Drug Delivery, Gamid Abatchev Dec 2021

Liposomes: Production And Applications For Controlled Drug Delivery, Gamid Abatchev

Boise State University Theses and Dissertations

This dissertation recognizes the enormous potential presented by the ever-evolving development of liposomes as drug carriers and seeks to offer further investigation into their useful production and utilization. The first chapter presents the basic principles governing their formation by self-assembly in water solutions, briefly describes the most common production methods, and points out essential past advances that led to their use as drug carriers. Chapter two exemplifies production of liposomes by the traditional methods of extrusion and sonication, detailing passive and active loading, as well as physical characterization by Dynamic Light Scattering, microscopy imaging, and fluorescence spectroscopy. In the next …


Role Of The Nuclear Envelope In The Mechanoregulation Adipogenesis, Matthew H. Goelzer Dec 2021

Role Of The Nuclear Envelope In The Mechanoregulation Adipogenesis, Matthew H. Goelzer

Boise State University Theses and Dissertations

Mechanical signals are known regulators of mesenchymal stem cell (MSC) fate, regulating their differentiation into osteoblasts, chondrocytes, and adipocytes. These relevant mechanical signals reach to nucleus through nuclear envelope proteins such as Lamin A/C and the Linker of the Nucleoskeleton and Cytoskeleton (LINC) complexes. Within the context of bone, clinically relevant mutations of Lamin A/C and the LINC complexes have been shown to alter adipogenic and osteogenic MSC differentiation patterns, suggesting that that nucleo-cytoskeletal connectivity provided by nuclear envelope is important in regulating MSC fate. Using MSC adipogenesis as a model of MSC mechanical regulation, the goal of this work …


Collagen Xi Impact On Structure And Function Of The Vertebrate Inner Ear In A Zebrafish Model, Makenna Hardy Aug 2021

Collagen Xi Impact On Structure And Function Of The Vertebrate Inner Ear In A Zebrafish Model, Makenna Hardy

Boise State University Theses and Dissertations

The ear is essential to maintaining balance and hearing; both of which can be linked to one another and significantly impact a person’s quality of life. Although aging and damage are more common reasons for hearing loss, congenital ear defects still have a considerable impact on our population. The function of the ear can be affected by structural deformities to the ear and its components which results in hearing loss. Mutations and single nucleotide polymorphisms in the gene encoding Collagen XI alpha one chain (COL11A1) protein can play a role in hearing and balance dysfunction in humans as seen in …