Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Life Sciences

Cd4 And Cd8 T Cells Directly Recognize Murine Gammaherpesvirus 68-Immortalized Cells And Prevent Tumor Outgrowth, Xiaozhan Liang, Rebecca L. Crepeau, Weijun Zhang, Samuel H. Speck, Edward J. Usherwood Mar 2013

Cd4 And Cd8 T Cells Directly Recognize Murine Gammaherpesvirus 68-Immortalized Cells And Prevent Tumor Outgrowth, Xiaozhan Liang, Rebecca L. Crepeau, Weijun Zhang, Samuel H. Speck, Edward J. Usherwood

Dartmouth Scholarship

There has been extensive research regarding T cell recognition of Epstein-Barr virus-transformed cells; however, less is known regarding the recognition of B cells immortalized by gamma-2 herpesviruses. Here we show that B cells immortalized by murine gammaherpesvirus 68 (MHV-68, γHV-68) can be controlled by either CD4 or CD8 T cells in vivo. We present evidence for the direct recognition of infected B cells by CD4 and CD8 T cells. These data will help in the development of immunotherapeutic approaches combating gamma-2 herpesvirus-related disease.


Translational Regulation Of The C-Jun Proto-Oncogene, Anil Sehgal Apr 1994

Translational Regulation Of The C-Jun Proto-Oncogene, Anil Sehgal

Theses and Dissertations in Biomedical Sciences

The v-jun oncogene was originally isolated from the ASV17 virus in 1987. Ever since its isolation, extensive work has been done to understand the role of the v-jun oncogene in cell transformation. The c-Jun protein is a transcription factor which binds to the DNA target TGACTCA. The c-Jun protein binds to DNA in the form of dimers. It can form homodimers with itself and heterodimers with Jun family (JunB and JunD), Fos family (FosB, Fra1 and Fra2), or with CREB family members through the leucine zipper motif. Because the c-jun proto-oncogene plays an important role in cell transformation, extensive work …


Transformation Of A Continuous Rat Embryo Fibroblast Cell Line Requires Three Separate Domains Of Simian Virus 40 Large T Antigen., Jiyue Zhu, Philip W. Rice, Lisa Gorsch, Marina Abate, Charles N. Cole May 1992

Transformation Of A Continuous Rat Embryo Fibroblast Cell Line Requires Three Separate Domains Of Simian Virus 40 Large T Antigen., Jiyue Zhu, Philip W. Rice, Lisa Gorsch, Marina Abate, Charles N. Cole

Dartmouth Scholarship

Mouse C3H 10T1/2 cells and the established rat embryo fibroblast cell line REF-52 are two cell lines widely used in studies of viral transformation. Studies have shown that transformation of 10T1/2 cells requires only the amino-terminal 121 amino acids of simian virus 40 (SV40) large T antigen, while transformation of REF-52 cells requires considerably more of large T antigen, extending from near the N terminus to beyond residue 600. The ability of a large set of linker insertion, small deletion, and point mutants of SV40 T antigen to transform these two cell lines and to bind p105Rb was determined. Transformation …


The Ability Of Simian Virus 40 Large T Antigen To Immortalize Primary Mouse Embryo Fibroblasts Cosegregates With Its Ability To Bind To P53., Jiyue Y. Zhu, Marina Abate, Philip W. Rice, Charles N. Cole Dec 1991

The Ability Of Simian Virus 40 Large T Antigen To Immortalize Primary Mouse Embryo Fibroblasts Cosegregates With Its Ability To Bind To P53., Jiyue Y. Zhu, Marina Abate, Philip W. Rice, Charles N. Cole

Dartmouth Scholarship

The large T antigen encoded by simian virus 40 (SV40) plays essential roles in the infection of permissive cells, leading to production of progeny virions, and in the infection of nonpermissive cells, leading to malignant transformation. Primary mouse embryo fibroblasts (MEFs) are nonpermissive for SV40, and infection by wild-type SV40 leads to immortalization and transformation of a small percentage of infected cells. We examined the ability of an extensive set of mutants whose lesions affect SV40 large T antigen to immortalize MEFs. We found that immortalization activity was retained by all mutants whose lesions are located upstream of codon 346. …


Absence Of A Structural Basis For Intracellular Recognition And Differential Localization Of Nuclear And Plasma Membrane-Associated Forms Of Simian Virus 40 Large Tumor Antigen., Donald L. Jarvis, Charles N. Cole, Janet S. Butel Mar 1986

Absence Of A Structural Basis For Intracellular Recognition And Differential Localization Of Nuclear And Plasma Membrane-Associated Forms Of Simian Virus 40 Large Tumor Antigen., Donald L. Jarvis, Charles N. Cole, Janet S. Butel

Dartmouth Scholarship

The simian virus 40 large tumor antigen (T-ag) is found in both the nuclei (nT-ag) and plasma membranes (mT-ag) of simian virus 40-infected or -transformed cells. It is not known how newly synthesized T-ag molecules are recognized, sorted, and transported to their ultimate subcellular destinations. One possibility is that these events depend upon structural differences between nT-ag and mT-ag. To test this possibility, we compared the structures of nT-ag and mT-ag from simian virus 40-infected cells. No differences between the two forms of T-ag were detected by migration in polyacrylamide gels, by Staphylococcus aureus V8 partial proteolytic mapping of methionine- …