Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Medical Specialties

PDF

University of Kentucky

2021

Keyword
Publication
Publication Type

Articles 31 - 50 of 50

Full-Text Articles in Life Sciences

An Ensemble Of The Icluster Method To Analyze Longitudinal Lncrna Expression Data For Psoriasis Patients, Suyan Tian, Chi Wang Apr 2021

An Ensemble Of The Icluster Method To Analyze Longitudinal Lncrna Expression Data For Psoriasis Patients, Suyan Tian, Chi Wang

Internal Medicine Faculty Publications

BACKGROUND: Psoriasis is an immune-mediated, inflammatory disorder of the skin with chronic inflammation and hyper-proliferation of the epidermis. Since psoriasis has genetic components and the diseased tissue of psoriasis is very easily accessible, it is natural to use high-throughput technologies to characterize psoriasis and thus seek targeted therapies. Transcriptional profiles change correspondingly after an intervention. Unlike cross-sectional gene expression data, longitudinal gene expression data can capture the dynamic changes and thus facilitate causal inference.

METHODS: Using the iCluster method as a building block, an ensemble method was proposed and applied to a longitudinal gene expression dataset for psoriasis, with the …


Keap1 Is Required For Artesunate Anticancer Activity In Non-Small-Cell Lung Cancer, Kristen S. Hill, Anthony Mcdowell Jr., J. Robert Mccorkle, Erin Schuler, Sally R. Ellingson, Rina Plattner, Jill M. Kolesar Apr 2021

Keap1 Is Required For Artesunate Anticancer Activity In Non-Small-Cell Lung Cancer, Kristen S. Hill, Anthony Mcdowell Jr., J. Robert Mccorkle, Erin Schuler, Sally R. Ellingson, Rina Plattner, Jill M. Kolesar

Pathology and Laboratory Medicine Faculty Publications

Artesunate is the most common treatment for malaria throughout the world. Artesunate has anticancer activity likely through the induction of reactive oxygen species, the same mechanism of action utilized in Plasmodium falciparum infections. Components of the kelch-like ECH-associated protein 1 (KEAP1)/nuclear factor erythroid 2-related factor 2 (NRF2) pathway, which regulates cellular response to oxidative stress, are mutated in approximately 30% of non-small-cell lung cancers (NSCLC); therefore, we tested the hypothesis that KEAP1 is required for artesunate sensitivity in NSCLC. Dose response assays identified A549 cells, which have a G333C-inactivating mutation in KEAP1, as resistant to artesunate, with an IC50 of …


Role Of Ampk And Akt In Triple Negative Breast Cancer Lung Colonization, Jeremy Johnson, Zeta Chow, Eun Young Lee, Heidi L. Weiss, B. Mark Evers, Piotr G. Rychahou Apr 2021

Role Of Ampk And Akt In Triple Negative Breast Cancer Lung Colonization, Jeremy Johnson, Zeta Chow, Eun Young Lee, Heidi L. Weiss, B. Mark Evers, Piotr G. Rychahou

Pathology and Laboratory Medicine Faculty Publications

Triple negative breast cancer (TNBC) is an aggressive disease with a 5-y relative survival rate of 11% after distant metastasis. To survive the metastatic cascade, tumor cells remodel their signaling pathways by regulating energy production and upregulating survival pathways. AMP-activated protein kinase (AMPK) and Akt regulate energy homeostasis and survival, however, the individual or synergistic role of AMPK and Akt isoforms during lung colonization by TNBC cells is unknown. The purpose of this study was to establish whether targeting Akt, AMPKα or both Akt and AMPKα isoforms in circulating cancer cells can suppress TNBC lung colonization. Transient silencing of Akt1 …


The Mwtab Python Library For Restful Access And Enhanced Quality Control, Deposition, And Curation Of The Metabolomics Workbench Data Repository, Christian D. Powell, Hunter N. B. Moseley Mar 2021

The Mwtab Python Library For Restful Access And Enhanced Quality Control, Deposition, And Curation Of The Metabolomics Workbench Data Repository, Christian D. Powell, Hunter N. B. Moseley

Markey Cancer Center Faculty Publications

The Metabolomics Workbench (MW) is a public scientific data repository consisting of experimental data and metadata from metabolomics studies collected with mass spectroscopy (MS) and nuclear magnetic resonance (NMR) analyses. MW has been constantly evolving; updating its ‘mwTab’ text file format, adding a JavaScript Object Notation (JSON) file format, implementing a REpresentational State Transfer (REST) interface, and nearly quadrupling the number of datasets hosted on the repository within the last three years. In order to keep up with the quickly evolving state of the MW repository, the ‘mwtab’ Python library and package have been continuously updated to mirror the changes …


Deep Active Learning For Classifying Cancer Pathology Reports, Kevin De Angeli, Shang Gao, Mohammed Alawad, Hong‑Jun Yoon, Noah Schaeferkoetter, Xiao‑Cheng Wu, Eric B. Durbin, Jennifer Doherty, Antoinette Stroup, Linda Coyle, Lynne Penberthy, Georgia Tourassi Mar 2021

Deep Active Learning For Classifying Cancer Pathology Reports, Kevin De Angeli, Shang Gao, Mohammed Alawad, Hong‑Jun Yoon, Noah Schaeferkoetter, Xiao‑Cheng Wu, Eric B. Durbin, Jennifer Doherty, Antoinette Stroup, Linda Coyle, Lynne Penberthy, Georgia Tourassi

Kentucky Cancer Registry Faculty Publications

Background: Automated text classification has many important applications in the clinical setting; however, obtaining labelled data for training machine learning and deep learning models is often difficult and expensive. Active learning techniques may mitigate this challenge by reducing the amount of labelled data required to effectively train a model. In this study, we analyze the effectiveness of 11 active learning algorithms on classifying subsite and histology from cancer pathology reports using a Convolutional Neural Network as the text classification model.

Results: We compare the performance of each active learning strategy using two differently sized datasets and two different classification tasks. …


Chronic Voluntary Alcohol Drinking Causes Anxiety-Like Behavior, Thiamine Deficiency, And Brain Damage Of Female Crossed High Alcohol Preferring Mice, Hong Xu, Hui Li, Dexiang Liu, Wen Wen, Mei Xu, Jacqueline A. Frank, Jing Chen, Haining Zhu, Nicholas J. Grahame, Jia Luo Mar 2021

Chronic Voluntary Alcohol Drinking Causes Anxiety-Like Behavior, Thiamine Deficiency, And Brain Damage Of Female Crossed High Alcohol Preferring Mice, Hong Xu, Hui Li, Dexiang Liu, Wen Wen, Mei Xu, Jacqueline A. Frank, Jing Chen, Haining Zhu, Nicholas J. Grahame, Jia Luo

Molecular and Cellular Biochemistry Faculty Publications

The central nervous system is vulnerable to chronic alcohol abuse, and alcohol dependence is a chronically relapsing disorder which causes a variety of physical and mental disorders. Appropriate animal models are important for investigating the underlying cellular and molecular mechanisms. The crossed High Alcohol Preferring mice prefer alcohol to water when given free access. In the present study, we used female cHAP mice as a model of chronic voluntary drinking to evaluate the effects of alcohol on neurobehavioral and neuropathological changes. The female cHAP mice had free-choice access to 10% ethanol and water, while control mice had access to water …


Impact Of Pediatric Obesity On Diurnal Blood Pressure Assessment And Cardiovascular Risk Markers, Margaret O. Murphy, Hong Huang, John A. Bauer, Aric Schadler, Majd Makhoul, Jody L. Clasey, Aftab S. Chishti, Stefan G. Kiessling Mar 2021

Impact Of Pediatric Obesity On Diurnal Blood Pressure Assessment And Cardiovascular Risk Markers, Margaret O. Murphy, Hong Huang, John A. Bauer, Aric Schadler, Majd Makhoul, Jody L. Clasey, Aftab S. Chishti, Stefan G. Kiessling

Pediatrics Faculty Publications

Background: The prevalence of hypertension is increasing particularly among obese children and adolescents. Obese children and adolescents with hypertension are likely to remain hypertensive as they reach adulthood and hypertension is linked to an increased risk for cardiovascular disease. Twenty-four-hour ambulatory blood pressure monitoring (ABPM) has become one of the most important tools in diagnosing hypertension in children and adolescents and circadian patterns of blood pressure may be important disease-risk predictors.

Methods: A retrospective chart review was conducted in patients aged 6–21 years who underwent 24-h ABPM at Kentucky Children's Hospital (KCH) from August 2012 through June 2017. Exclusion criteria …


Real World Clinicopathologic Observations Of Patients With Metastatic Solid Tumors Receiving Immune Checkpoint Inhibitor Therapy: Analysis From Kentucky Cancer Registry, Aasems Jacob, Jianrong Wu, Jill M. Kolesar, Eric B. Durbin, Aju Mathew, Susanne Arnold, Aman Chauhan Feb 2021

Real World Clinicopathologic Observations Of Patients With Metastatic Solid Tumors Receiving Immune Checkpoint Inhibitor Therapy: Analysis From Kentucky Cancer Registry, Aasems Jacob, Jianrong Wu, Jill M. Kolesar, Eric B. Durbin, Aju Mathew, Susanne Arnold, Aman Chauhan

Biostatistics Faculty Publications

The state of Kentucky has the highest cancer incidence and mortality in the United States. High‐risk populations such as this are often underrepresented in clinical trials. The study aims to do a comprehensive analysis of molecular landscape of metastatic cancers among these patients with detailed evaluation of factors affecting response and outcomes to immune checkpoint inhibitor (ICI) therapy. We performed a retrospective analysis of metastatic solid tumor patients who received ICI and underwent molecular profiling at our institution.

Sixty nine patients with metastatic solid tumors who received ICI were included in the study. Prevalence of smoking and secondhand tobacco exposure …


Machine Intelligence Identifies Soluble Tnfa As A Therapeutic Target For Spinal Cord Injury, J. R. Huie, A. R. Ferguson, N. Kyritsis, J. Z. Pan, K.-A. Irvine, J. L. Nielson, P. G. Schupp, M. C. Oldham, John C. Gensel, A. Lin, M. R. Segal, R. R. Ratan, J. C. Bresnahan, M. S. Beattie Feb 2021

Machine Intelligence Identifies Soluble Tnfa As A Therapeutic Target For Spinal Cord Injury, J. R. Huie, A. R. Ferguson, N. Kyritsis, J. Z. Pan, K.-A. Irvine, J. L. Nielson, P. G. Schupp, M. C. Oldham, John C. Gensel, A. Lin, M. R. Segal, R. R. Ratan, J. C. Bresnahan, M. S. Beattie

Spinal Cord and Brain Injury Research Center Faculty Publications

Traumatic spinal cord injury (SCI) produces a complex syndrome that is expressed across multiple endpoints ranging from molecular and cellular changes to functional behavioral deficits. Effective therapeutic strategies for CNS injury are therefore likely to manifest multi-factorial effects across a broad range of biological and functional outcome measures. Thus, multivariate analytic approaches are needed to capture the linkage between biological and neurobehavioral outcomes. Injury-induced neuroinflammation (NI) presents a particularly challenging therapeutic target, since NI is involved in both degeneration and repair. Here, we used big-data integration and large-scale analytics to examine a large dataset of preclinical efficacy tests combining five …


Dna Repair Pathways In Cancer Therapy And Resistance, Lan-Ya Li, Yi-Di Guan, Xi-Sha Chen, Jin-Ming Yang, Yan Cheng Feb 2021

Dna Repair Pathways In Cancer Therapy And Resistance, Lan-Ya Li, Yi-Di Guan, Xi-Sha Chen, Jin-Ming Yang, Yan Cheng

Toxicology and Cancer Biology Faculty Publications

DNA repair pathways are triggered to maintain genetic stability and integrity when mammalian cells are exposed to endogenous or exogenous DNA-damaging agents. The deregulation of DNA repair pathways is associated with the initiation and progression of cancer. As the primary anti-cancer therapies, ionizing radiation and chemotherapeutic agents induce cell death by directly or indirectly causing DNA damage, dysregulation of the DNA damage response may contribute to hypersensitivity or resistance of cancer cells to genotoxic agents and targeting DNA repair pathway can increase the tumor sensitivity to cancer therapies. Therefore, targeting DNA repair pathways may be a potential therapeutic approach for …


Regional N-Glycan And Lipid Analysis From Tissues Using Maldi-Mass Spectrometry Imaging, Alexandra E. Stanback, Lindsey R. Conroy, Lyndsay E. A. Young, Tara R. Hawkinson, Kia H. Markussen, Harrison A. Clarke, Derek B. Allison, Ramon C. Sun Jan 2021

Regional N-Glycan And Lipid Analysis From Tissues Using Maldi-Mass Spectrometry Imaging, Alexandra E. Stanback, Lindsey R. Conroy, Lyndsay E. A. Young, Tara R. Hawkinson, Kia H. Markussen, Harrison A. Clarke, Derek B. Allison, Ramon C. Sun

Neuroscience Faculty Publications

N-glycans and lipids are structural metabolites that play important roles in cellular processes. Both show unique regional distribution in tissues; therefore, spatial analyses of these metabolites are crucial to our understanding of cellular physiology. Matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) is an innovative technique that enables in situ detection of analytes with spatial distribution. This workflow details a MALDI-MSI protocol for the spatial profiling of N-glycans and lipids from tissues following application of enzyme and MALDI matrix.

For complete details on the use and execution of this protocol, please refer to Drake et al. (2018) and Andres et al. (2020).


Macrophage-Engineered Vesicles For Therapeutic Delivery And Bidirectional Reprogramming Of Immune Cell Polarization, Khaga R. Neupane, J. Robert Mccorkle, Timothy J. Kopper, Jourdan E. Lakes, Surya P. Aryal, Masud Abdullah, Aaron A. Snell, John C. Gensel, Jill M. Kolesar, Christopher I. Richards Jan 2021

Macrophage-Engineered Vesicles For Therapeutic Delivery And Bidirectional Reprogramming Of Immune Cell Polarization, Khaga R. Neupane, J. Robert Mccorkle, Timothy J. Kopper, Jourdan E. Lakes, Surya P. Aryal, Masud Abdullah, Aaron A. Snell, John C. Gensel, Jill M. Kolesar, Christopher I. Richards

Spinal Cord and Brain Injury Research Center Faculty Publications

Macrophages, one of the most important phagocytic cells of the immune system, are highly plastic and are known to exhibit diverse roles under different pathological conditions. The ability to repolarize macrophages from pro-inflammatory (M1) to anti-inflammatory (M2) or vice versa offers a promising therapeutic approach for treating various diseases such as traumatic injury and cancer. Herein, it is demonstrated that macrophage-engineered vesicles (MEVs) generated by disruption of macrophage cellular membranes can be used as nanocarriers capable of reprogramming macrophages and microglia toward either pro- or anti-inflammatory phenotypes. MEVs can be produced at high yields and easily loaded with diagnostic molecules …


Broad Kinase Inhibition Mitigates Early Neuronal Dysfunction In Tauopathy, Shon A. Koren, Matthew J. Hamm, Ryan Cloyd, Sarah N. Fontaine, Emad Chishti, Chiara Lanzillotta, Jennifer Rodriguez-Rivera, Alexandria Ingram, Michelle Bell, Sara M. Galvis-Escobar, Nicholas Zulia, Fabio Di Domenico, Duc Duong, Nicholas T. Seyfried, David K. Powell, Moriel Vandsburger, Tal Frolinger, Anika M. S. Hartz, John Koren Iii, Jeffrey M. Axten, Nicholas J. Laping, Jose F. Abisambra Jan 2021

Broad Kinase Inhibition Mitigates Early Neuronal Dysfunction In Tauopathy, Shon A. Koren, Matthew J. Hamm, Ryan Cloyd, Sarah N. Fontaine, Emad Chishti, Chiara Lanzillotta, Jennifer Rodriguez-Rivera, Alexandria Ingram, Michelle Bell, Sara M. Galvis-Escobar, Nicholas Zulia, Fabio Di Domenico, Duc Duong, Nicholas T. Seyfried, David K. Powell, Moriel Vandsburger, Tal Frolinger, Anika M. S. Hartz, John Koren Iii, Jeffrey M. Axten, Nicholas J. Laping, Jose F. Abisambra

Sanders-Brown Center on Aging Faculty Publications

Tauopathies are a group of more than twenty known disorders that involve progressive neurodegeneration, cognitive decline and pathological tau accumulation. Current therapeutic strategies provide only limited, late-stage symptomatic treatment. This is partly due to lack of understanding of the molecular mechanisms linking tau and cellular dysfunction, especially during the early stages of disease progression. In this study, we treated early stage tau transgenic mice with a multi-target kinase inhibitor to identify novel substrates that contribute to cognitive impairment and exhibit therapeutic potential. Drug treatment significantly ameliorated brain atrophy and cognitive function as determined by behavioral testing and a sensitive imaging …


Arginase 1 Insufficiency Precipitates Amyloid-Β Deposition And Hastens Behavioral Impairment In A Mouse Model Of Amyloidosis, Chao Ma, Jerry B. Hunt, Maj-Linda B. Selenica, Awa Sanneh, Leslie A. Sandusky-Beltran, Mallory Watler, Rana Daas, Andrii Kovalenko, Huimin Liang, Devon Placides, Chuanhai Cao, Xiaoyang Lin, Michael B. Orr, Bei Zhang, John C. Gensel, David J. Feola, Marcia N. Gordon, Dave Morgan, Paula C. Bickford, Daniel C. Lee Jan 2021

Arginase 1 Insufficiency Precipitates Amyloid-Β Deposition And Hastens Behavioral Impairment In A Mouse Model Of Amyloidosis, Chao Ma, Jerry B. Hunt, Maj-Linda B. Selenica, Awa Sanneh, Leslie A. Sandusky-Beltran, Mallory Watler, Rana Daas, Andrii Kovalenko, Huimin Liang, Devon Placides, Chuanhai Cao, Xiaoyang Lin, Michael B. Orr, Bei Zhang, John C. Gensel, David J. Feola, Marcia N. Gordon, Dave Morgan, Paula C. Bickford, Daniel C. Lee

Sanders-Brown Center on Aging Faculty Publications

Alzheimer’s disease (AD) includes several hallmarks comprised of amyloid-β (Aβ) deposition, tau neuropathology, inflammation, and memory impairment. Brain metabolism becomes uncoupled due to aging and other AD risk factors, which ultimately lead to impaired protein clearance and aggregation. Increasing evidence indicates a role of arginine metabolism in AD, where arginases are key enzymes in neurons and glia capable of depleting arginine and producing ornithine and polyamines. However, currently, it remains unknown if the reduction of arginase 1 (Arg1) in myeloid cell impacts amyloidosis. Herein, we produced haploinsufficiency of Arg1 by the hemizygous deletion in myeloid cells using Arg1 …


Lat1 Protein Content Increases Following 12 Weeks Of Resistance Exercise Training In Human Skeletal Muscle, Paul A. Roberson, Christopher Brooks Mobley, Matthew A. Romero, Cody T. Haun, Shelby C. Osburn, Petey W. Mumford, Christopher G. Vann, Rory A. Greer, Arny A. Ferrando, Michael D. Roberts Jan 2021

Lat1 Protein Content Increases Following 12 Weeks Of Resistance Exercise Training In Human Skeletal Muscle, Paul A. Roberson, Christopher Brooks Mobley, Matthew A. Romero, Cody T. Haun, Shelby C. Osburn, Petey W. Mumford, Christopher G. Vann, Rory A. Greer, Arny A. Ferrando, Michael D. Roberts

Physiology Faculty Publications

Introduction: Amino acid transporters are essential for cellular amino acid transport and promoting protein synthesis. While previous literature has demonstrated the association of amino acid transporters and protein synthesis following acute resistance exercise and amino acid supplementation, the chronic effect of resistance exercise and supplementation on amino acid transporters is unknown. The purpose herein was to determine if amino acid transporters and amino acid metabolic enzymes were related to skeletal muscle hypertrophy following resistance exercise training with different nutritional supplementation strategies.

Methods: 43 college-aged males were separated into a maltodextrin placebo (PLA, n = 12), leucine (LEU, n = 14), …


Mitochondria Exert Age-Divergent Effects On Recovery From Spinal Cord Injury, Andrew N. Stewart, Katelyn E. Mcfarlane, Hemendra J. Vekaria, William M. Bailey, Stacey A. Slone, Lauren A. Tranthem, Bei Zhang, Samir P. Patel, Patrick G. Sullivan, John C. Gensel Jan 2021

Mitochondria Exert Age-Divergent Effects On Recovery From Spinal Cord Injury, Andrew N. Stewart, Katelyn E. Mcfarlane, Hemendra J. Vekaria, William M. Bailey, Stacey A. Slone, Lauren A. Tranthem, Bei Zhang, Samir P. Patel, Patrick G. Sullivan, John C. Gensel

Physiology Faculty Publications

The extent that age-dependent mitochondrial dysfunction drives neurodegeneration is not well understood. This study tested the hypothesis that mitochondria contribute to spinal cord injury (SCI)-induced neurodegeneration in an age-dependent manner by using 2,4-dinitrophenol (DNP) to uncouple electron transport, thereby increasing cellular respiration and reducing reactive oxygen species (ROS) production. We directly compared the effects of graded DNP doses in 4- and 14-month-old (MO) SCI-mice and found DNP to have increased efficacy in mitochondria isolated from 14-MO animals. In vivo, all DNP doses significantly exacerbated 4-MO SCI neurodegeneration coincident with worsened recovery. In contrast, low DNP doses (1.0-mg/kg/day) improved tissue …


Characterizing The Physiology And Genetics Of Contact Dependent Growth Inhibiton Systems In Burkholderia Species, Alice Elizabeth Oates Jan 2021

Characterizing The Physiology And Genetics Of Contact Dependent Growth Inhibiton Systems In Burkholderia Species, Alice Elizabeth Oates

Theses and Dissertations--Microbiology, Immunology, and Molecular Genetics

Contact-dependent growth inhibition (CDI) systems mediate interbacterial competition. The genes encoding these systems are widespread among Gram-negative bacteria, including Burkholderia pathogens. CDI systems of Burkholderia species are composed of two-partner secretion pathway proteins and function to deliver the toxic C-terminus of a polymorphic surface-exposed exoprotein BcpA (Burkholderia CDI protein A) to the cytoplasm of neighboring recipient bacteria upon cell-cell contact. Specific outer and inner membrane proteins facilitate BcpA translocation both out of the donor bacterium and into the recipient cell cytoplasm. Most Burkholderia species-specific CDI translocation factors in recipient cells are unknown. BcpA intoxication functions as a mechanism by …


Dual-Functional Phosphorene Nanocomposite Membranes For The Treatment Of Perfluorinated Water: An Investigation Of Perfluorooctanoic Acid Removal Via Filtration Combined With Ultraviolet Irradiation Or Oxygenation, Joyner Eke, Lillian Banks, M. Abdul Mottaleb, Andrew J. Morris, Olga V. Tsyusko, Isabel C. Escobar Jan 2021

Dual-Functional Phosphorene Nanocomposite Membranes For The Treatment Of Perfluorinated Water: An Investigation Of Perfluorooctanoic Acid Removal Via Filtration Combined With Ultraviolet Irradiation Or Oxygenation, Joyner Eke, Lillian Banks, M. Abdul Mottaleb, Andrew J. Morris, Olga V. Tsyusko, Isabel C. Escobar

Internal Medicine Faculty Publications

Nanomaterials with tunable properties show promise because of their size-dependent electronic structure and controllable physical properties. The purpose of this research was to develop and validate environmentally safe nanomaterial-based approach for treatment of drinking water including removal and degradation of per- and polyfluorinated chemicals (PFAS). PFAS are surfactant chemicals with broad uses that are now recognized as contaminants with a significant risk to human health. They are commonly used in household and industrial products. They are extremely persistent in the environment because they possess both hydrophobic fluorine-saturated carbon chains and hydrophilic functional groups, along with being oleophobic. Traditional drinking water …


Development And Clinical Validation Of Knowledge-Based Planning Models For Stereotactic Body Radiotherapy Of Early-Stage Non-Small-Cell Lung Cancer Patients, Justin David Visak Jan 2021

Development And Clinical Validation Of Knowledge-Based Planning Models For Stereotactic Body Radiotherapy Of Early-Stage Non-Small-Cell Lung Cancer Patients, Justin David Visak

Theses and Dissertations--Radiation Medicine

Lung stereotactic body radiotherapy (SBRT) is a viable alternative to surgical intervention for the treatment of early-stage non-small-cell lung cancer (NSCLC) patients. This therapy achieves strong local control rates by delivering ultra-high, conformal radioablative doses in typically one to five fractions. Historically, lung SBRT plans are manually generated using 3D conformal radiation therapy, dynamic conformal arcs (DCA), intensity-modulated radiation therapy, and more recently via volumetric modulated arc therapy (VMAT) on a C-arm linear accelerator (linac). Manually planned VMAT is an advanced technique to deliver high-quality lung SBRT due to its dosimetric capabilities and utilization of flattening-filter free beams to improve …


Therapeutic Targeting Of Leukemia Stem Cells To Prevent T-Cell Acute Lymphoblastic Leukemia Relapse, Meghan G. Haney Jan 2021

Therapeutic Targeting Of Leukemia Stem Cells To Prevent T-Cell Acute Lymphoblastic Leukemia Relapse, Meghan G. Haney

Theses and Dissertations--Molecular and Cellular Biochemistry

The survival rate of T-cell Acute Lymphoblastic Leukemia (T-ALL) relapse is a dismal 10% of affected adults and 30% of children, largely due to the relapsed disease being more aggressive and treatment resistant than the initial disease. Relapse is thought to occur because conventional chemotherapies are unable to reliably eliminate a unique cell type known as leukemia stem (or propagating) cells (LSCs). LSCs are the only cells within the leukemia with the ability to self-renew and remake or replenish the ALL from a single cell. Currently, the pathways governing self-renewal in LSCs are largely unknown, precluding our ability to successfully …