Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Life Sciences

Identifying Genes Influencing The Efficiency Of Photosynthesis, Jason M. Rivera, Steven Burgess Apr 2023

Identifying Genes Influencing The Efficiency Of Photosynthesis, Jason M. Rivera, Steven Burgess

PRECS student projects

  • Photosynthesis adapts to environmental conditions over time.¹

  • Varying environmental conditions lead to stress accumulation on the plant.²

  • A genetic library has been assembled for forward genetic screening of Arabidopsis thaliana.³

  • Arabidopsis Thaliana is a model plant used as a model organism in growth experiments.

  • This research project aims to identify and analyze candidate genes that impact the efficiency of photosynthesis.

  • These genes can be transplanted into commercial crops to increase efficiency of photosynthesis and crop yields.


Tetrameric Photosystem I: From Initial Discovery And Characterization In Chroococcidiopsis Sp. Ts-821 To Exploration Of Its Distribution And Understanding Of Its Significance In Cyanobacteria, Meng Li Dec 2016

Tetrameric Photosystem I: From Initial Discovery And Characterization In Chroococcidiopsis Sp. Ts-821 To Exploration Of Its Distribution And Understanding Of Its Significance In Cyanobacteria, Meng Li

Doctoral Dissertations

Photosystem I (PSI) forms trimeric complexes in most characterized cyanobacteria. We had reported the tetrameric form of PSI in the unicellular cyanobacterium, Chroococcidiopsis sp. TS-821 (TS-821). Using Cryo-EM, a 3D model of the PSI tetramer structure at 11.5 [Angstrom] resolution was obtained and a 2D map within the membrane plane of at 6.1 [Angstrom]. In contrast to the three-fold symmetry in trimeric PSI crystal structure from T. elongatus, two different inter-monomer interactions involving PsaLs are found in the PSI tetramer. Phylogenetic analysis based on PsaL protein sequences shows that TS-821 is closely related to heterocyst-forming cyanobacteria. Additionally, this tetrameric …


Effects Of Excitation Pressure On Variegation And Global Gene Expression In Arabidopsis Thaliana, Rainer Bode Dec 2013

Effects Of Excitation Pressure On Variegation And Global Gene Expression In Arabidopsis Thaliana, Rainer Bode

Electronic Thesis and Dissertation Repository

I assessed the effects of photosystem II excitation pressure on chloroplast biogenesis and leaf sectoring in the Arabidopsis thaliana variegated mutants im, spotty, var1, var2, chs5 and atd2. The plants were grown under varying degrees of excitation pressure induced by growth at increasing irradiance at different temperatures and the extent of variegation was quantified throughout the plant’s development. I found that the degree of variegation was positively correlated with excitation pressure, regardless of whether high light or low temperature was used to induce increased excitation pressure in all the mutants tested. This was irrespective of …


Coupling Coherence Distinguishes Structure Sensitivity In Protein Electron Transfer, Tatiana Prytkova, Igor V. Kurnikov, David Beratan Jan 2007

Coupling Coherence Distinguishes Structure Sensitivity In Protein Electron Transfer, Tatiana Prytkova, Igor V. Kurnikov, David Beratan

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Quantum mechanical analysis of electron tunneling in nine thermally fluctuating cytochrome b562 derivatives reveals two distinct protein-mediated coupling limits. A structure-insensitive regime arises for redox partners coupled through dynamically averaged multiple-coupling pathways (in seven of the nine derivatives) where heme-edge coupling leads to the multiple-pathway regime. A structure-dependent limit governs redox partners coupled through a dominant pathway (in two of the nine derivatives) where axial-ligand coupling generates the single-pathway limit and slower rates. This two-regime paradigm provides a unified description of electron transfer rates in 26 ruthenium-modified heme and blue-copper proteins, as well as in numerous photosynthetic proteins.


Animal Anti-Apoptotic Genes Ameliorate The Loss Of Turgor In Water-Stressed Transgenic Tobacco, Tala Awada, D. D. Dunigan, M. B. Dickman Jan 2003

Animal Anti-Apoptotic Genes Ameliorate The Loss Of Turgor In Water-Stressed Transgenic Tobacco, Tala Awada, D. D. Dunigan, M. B. Dickman

Nebraska Center for Virology: Faculty Publications

Nicotiana tabacum L. ‘Glurk’ plants were transformed with antiapoptotic animal genes [chicken Bcl-xl; nematode CED-9; chicken Bcl-xl(GA) a mutant of Bcl-xl; and a 3’ non-coding region of human Bcl-2, referred to as 161-1]. Our objectives were to determine whether plant transformation with anti-apoptotic genes ameliorates drought tolerance in tobacco plants by subjecting the plants to a dry-down period. The non-transformed Glurk and the transgenic Glurk harboring G115, which expresses β-glucuronidase, served as controls. Transformation of tobacco plants with animal anti-apoptotic genes significantly impacted the rates of photosynthesis (A) and stomatal conductance (gs), but not to the same extent …