Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Life Sciences

Gene Expression Under Combined Hypoxia And Acidosis In Chondrosarcoma, Michael Stacey, Kostika Vangjeli, Christopher Osgood Jan 2023

Gene Expression Under Combined Hypoxia And Acidosis In Chondrosarcoma, Michael Stacey, Kostika Vangjeli, Christopher Osgood

Bioelectrics Publications

Chondrosarcomas are the second most common cause of bone cancer and are removed surgically with wide margins. On recurrence, they are resistant to chemo and radiation therapy and new treatment options are critically required. This tumor type produces hyaline cartilage, a cartilage normally formed under hypoxic and acidic environment due to lack of vasculature in cartilage. Paradoxically, chondrosarcomas arise in the well vascularized, oxygen rich environment of the bone. Hypoxia and acidosis are two stressors where the cellular effects are typically reported separately even though cells experience combined effects of hypoxia and acidosis. Given the mechanistic links between hypoxia and …


The Role Of The Hypoxia-Inducible Factor 2 In Pancreatic Cancer: Mechanisms Of Tumor Immunosuppression And Intestinal Radioprotection, Carolina Garcia Garcia Aug 2022

The Role Of The Hypoxia-Inducible Factor 2 In Pancreatic Cancer: Mechanisms Of Tumor Immunosuppression And Intestinal Radioprotection, Carolina Garcia Garcia

Dissertations & Theses (Open Access)

Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with dismal prognosis. The only curative option for patients is surgery, but over 80% of patients are not surgical candidates. Unfortunately, PDAC is resistant to the three remaining options. PDAC is characterized by a profoundly hypoxic and immunosuppressive stroma, which contributes to its therapeutic recalcitrance. Alpha-smooth muscle actin+ (αSMA+) cancer-associated fibroblasts (CAFs) are the most abundant stromal component, as well as mediators of stromal deposition. The hypoxia-inducible factors (HIF1 and HIF2) coordinate responses to hypoxia, yet, despite their known association to poor patient outcomes, their functions within the PDAC tumor microenvironment (TME) …


Severe Hypoxia Up-Regulates Gluconeogenesis In Daphnia, Morad C. Malek May 2022

Severe Hypoxia Up-Regulates Gluconeogenesis In Daphnia, Morad C. Malek

Undergraduate Honors Theses

Hypoxia is a significant low oxygen state that has complex and diverse impacts on organisms. In aerobes, various adaptive responses to hypoxia are observed that vary depending on the level of oxygen depletion and previous adaptation, hence the continued attention to hypoxia as an important abiotic stressor. Adaptive responses to hypoxia are primarily governed by the hypoxia-inducible factors (HIFs), which activate downstream genetic pathways responsible for oxygen transport and metabolic plasticity. In aquatic habitats, oxygen availability can vary greatly over time and space. Therefore, aquatic organisms’ adaptation to hypoxia is likely pervasive, especially in genotypes originating from waterbodies prone to …


Understanding The Pathogenesis Of Renal Medullary Carcinoma, Melinda Soeung Aug 2021

Understanding The Pathogenesis Of Renal Medullary Carcinoma, Melinda Soeung

Dissertations & Theses (Open Access)

Renal medullary carcinoma (RMC) is a lethal cancer that predominantly affects young individuals with sickle cell trait (SCT). It is not currently understood why RMC only affects certain individuals with SCT. We found that patients with RMC more frequently participated in high-intensity exercise than matched controls. Using mouse models of SCT, we demonstrated the significant increase of renal hypoxia in the right kidney following high- but not moderate-intensity exercise. We also demonstrated in cell culture studies that SMARCB1 is ubiquitinated for proteasome-mediated degradation in hypoxia, and the re-expression of SMARCB1 leads to compromised proliferation in renal cells specifically in the …


Effects Of Respiratory Perturbations On Aging And Healthspan In Daphnia Magna, Millicent Nkiruka Ekwudo May 2021

Effects Of Respiratory Perturbations On Aging And Healthspan In Daphnia Magna, Millicent Nkiruka Ekwudo

Electronic Theses and Dissertations

Aging is a degenerative process characterized by a decline in physiological functions and cellular activities. Environmental and pharmacological interventions affecting longevity pathways have been extensively studied in model organisms. This study investigated the effect of chronic mild intermittent hypoxia (4 mg O2/L) or mild mitochondrial uncoupling with three doses of 0 (control), 0.1, 1, and 5 μM of 2,4-Dinitrophenol (DNP), on life history and gene expression in four clones of Daphnia magna. Interestingly, clones from intermittent ponds displayed better tolerance to hypoxia and DNP. Although neither treatments extended longevity, hypoxia increased fecundity and body size, and decreased food consumption and …


Differential Gene Expression In Response To Hypoxia And Acidosis In Chest Wall Deformities And Chondrosarcoma, Jamie L. Durbin Apr 2018

Differential Gene Expression In Response To Hypoxia And Acidosis In Chest Wall Deformities And Chondrosarcoma, Jamie L. Durbin

Biological Sciences Theses & Dissertations

The importance of understanding how costal cartilage chondrocytes respond to stimuli such as oxidative stress and low pH has been largely overlooked in studies involving tissue culturing due to major differences between oxygen and pH levels during incubation and the natural environment of hyaline cartilage. Hyaline cartilage is avascular and naturally hypoxic which subsequently leads to increased glycolytic metabolism and ultimately causes a decrease in extracellular pH. To examine how healthy costal cartilage responds to these extreme growth conditions, we examined responses in three hyaline cartilage diseases. Our ability to identify the disease mechanisms responsible for pectus excavatum, pectus carinatum, …


Noncanonical Alternative Polyadenylation Contributes To Gene Regulation In Response To Hypoxia, Laura De Lorenzo, Reed Sorenson, Julia Bailey-Serres, Arthur G. Hunt Jun 2017

Noncanonical Alternative Polyadenylation Contributes To Gene Regulation In Response To Hypoxia, Laura De Lorenzo, Reed Sorenson, Julia Bailey-Serres, Arthur G. Hunt

Plant and Soil Sciences Faculty Publications

Stresses from various environmental challenges continually confront plants, and their responses are important for growth and survival. One molecular response to such challenges involves the alternative polyadenylation of mRNA. In plants, it is unclear how stress affects the production and fate of alternative mRNA isoforms. Using a genome-scale approach, we show that in Arabidopsis thaliana, hypoxia leads to increases in the number of mRNA isoforms with polyadenylated 3′ ends that map to 5′-untranslated regions (UTRs), introns, and protein-coding regions. RNAs with 3′ ends within protein-coding regions and introns were less stable than mRNAs that end at 3′-UTR poly(A) sites. …


Hif-Independent Responses In Hypoxia, Divya Padmanabha Jan 2015

Hif-Independent Responses In Hypoxia, Divya Padmanabha

Theses and Dissertations

The adaptive response to hypoxia is accompanied by widespread transcriptional changes that allow for prolonged survival in low oxygen. Many of these changes are directly regulated by the conserved hypoxia-inducible factor-1 (HIF-1) complex; however, even in its absence, many oxygen-sensitive transcripts in Caenorhabditis elegans are appropriately regulated in hypoxia. To identify mediators of these non-HIF-dependent responses, I established a hif-1 mutant reporter line that expresses GFP in hypoxia or when worms are treated with the hypoxia mimetic cobalt chloride (cobalt chloride). The reporter is selective and HIF-independent, in that it remains insensitive to a number of cellular stresses, but is …


The Roles Of Phenotypic Plasticity And Genotypic Specialization In High Altitude Adaptation, Danielle M. Tufts Dec 2013

The Roles Of Phenotypic Plasticity And Genotypic Specialization In High Altitude Adaptation, Danielle M. Tufts

School of Biological Sciences: Dissertations, Theses, and Student Research

In vertebrates living at high altitude, arterial hypoxemia may be ameliorated by reversible changes in the oxygen-carrying capacity of the blood (regulated by erythropoiesis) and/or changes in blood–oxygen affinity (regulated by allosteric effectors of hemoglobin function). These hematological traits often differ between taxa that are native to different elevational zones, but it is often unknown whether the observed physiological differences reflect fixed, genetically based differences or environmentally induced acclimatization responses (phenotypic plasticity). Here, we report measurements of hematological traits related to blood–O2 transport in populations of deer mice (Peromyscus maniculatus) that are native to high- and low-altitude …


Hypoxia-Sensitive Gene Expression In The Gastrocnemius Muscle Following Chronic Hind Limb Ischemia, Andrew Tilton Jul 2012

Hypoxia-Sensitive Gene Expression In The Gastrocnemius Muscle Following Chronic Hind Limb Ischemia, Andrew Tilton

Biological Sciences

Chronic ischemia, caused by the formation atherosclerotic plaque occlusions in major conduit arteries, is the leading cause of morbidity and mortality in western societies. Vascular remodeling can help compensate for the adverse effects of atherosclerotic plaque formation. Vascular remodeling relies heavily on vascular endothelial growth factor (VEGF), a critical protein that contributes to all forms of vascular formation and remodeling including angiogenesis, arteriogenesisand vasculogenesis. VEGF itself is up-regulated by the transcription factor, hypoxia inducible factor 1 alpha (HIF-1α), which becomes activated in low oxygen environments.

Through the use of animal chronic hindlimb ischemia models, these genes can be evaluated as …


Exploring The Effects Of Hypoxia On Sulfate Reducing Anaerobes, Annaliese K. Jones Dec 2011

Exploring The Effects Of Hypoxia On Sulfate Reducing Anaerobes, Annaliese K. Jones

Senior Honors Projects

Exploring the Effects of Hypoxia on Sulfate Reducing Anaerobes

Annaliese K. Jones

Sponsor: Bethany Jenkins, Cell and Molecular Biology

As a student about to graduate with a degree in Biological Sciences, I find myself faced with the need to find my own independent research interests and scientific voice. As a result of my interests in the fields of both microbiology and ecology, I am drawn to questions surrounding the role and behavior of microorganisms in the environment. With climate change being an issue capturing the attention of a large portion of the scientific community, I have chosen to focus my …


Genetic Differences In Hemoglobin Function Between Highland And Lowland Deer Mice, Jay F. Storz, Amy M. Runck, Hideaki Moriyama, Roy E. Weber, Angela Fago Jan 2010

Genetic Differences In Hemoglobin Function Between Highland And Lowland Deer Mice, Jay F. Storz, Amy M. Runck, Hideaki Moriyama, Roy E. Weber, Angela Fago

Jay F. Storz Publications

In high-altitude vertebrates, adaptive changes in blood–O2 affinity may be mediated by modifications of hemoglobin (Hb) structure that affect intrinsic O2 affinity and/or responsiveness to allosteric effectors that modulate Hb–O2 affinity. This mode of genotypic specialization is considered typical of mammalian species that are high-altitude natives. Here we investigated genetically based differences in Hb–O2 affinity between highland and lowland populations of the deer mouse (Peromyscus maniculatus), a generalist species that has the broadest altitudinal distribution of any North American mammal. The results of a combined genetic and proteomic analysis revealed that deer mice harbor …


Evolutionary And Functional Insights Into The Mechanism Underlying High-Altitude Adaptation Of Deer Mouse Hemoglobin, Jay F. Storz, Amy M. Runck, Stephen J. Sabatino, John K. Kelly, Nuno Ferrand, Hideaki Moriyama, Roy E. Weber, Angela Fago Aug 2009

Evolutionary And Functional Insights Into The Mechanism Underlying High-Altitude Adaptation Of Deer Mouse Hemoglobin, Jay F. Storz, Amy M. Runck, Stephen J. Sabatino, John K. Kelly, Nuno Ferrand, Hideaki Moriyama, Roy E. Weber, Angela Fago

Jay F. Storz Publications

Adaptive modifications of heteromeric proteins may involve genetically based changes in single subunit polypeptides or parallel changes in multiple genes that encode distinct, interacting subunits. Here we investigate these possibilities by conducting a combined evolutionary and functional analysis of duplicated globin genes in natural populations of deer mice (Peromyscus maniculatus) that are adapted to different elevational zones. A multilocus analysis of nucleotide polymorphism and linkage disequilibrium revealed that high-altitude adaptation of deer mouse hemoglobin involves parallel functional differentiation at multiple unlinked gene duplicates: two α-globin paralogs on chromosome 8 and two β-globin paralogs on chromosome 1. Differences in …


Hemoglobin Function And Physiological Adaptation To Hypoxia In High-Altitude Mammals, Jay F. Storz Feb 2007

Hemoglobin Function And Physiological Adaptation To Hypoxia In High-Altitude Mammals, Jay F. Storz

Jay F. Storz Publications

Understanding the biochemical mechanisms that enable high-altitude animals to survive and function under conditions of hypoxic stress can provide important insights into the nature of physiological adaptation. Evidence from a number of high-altitude vertebrates indicates that modifications of hemoglobin function typically play a key role in mediating an adaptive response to chronic hypoxia. Because much is known about structure– function relationships of mammalian hemoglobins and their physiological role in oxygen transport, the study of hemoglobin variation in high-altitude mammals holds much promise for understanding the nature of adaptation to hypoxia from the level of blood biochemistry to the level of …