Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

A Multi-Omics Framework Reveals Strawberry Flavor Genes And Their Regulatory Elements, Zhen Fan, Denise M Tieman, Steven J Knapp, Philipp Zerbe, Randi Famula, Christopher R Barbey, Kevin M Folta, Rodrigo R Amadeu, Manbo Lee, Youngjae Oh, Seonghee Lee, Vance M Whitaker Nov 2022

A Multi-Omics Framework Reveals Strawberry Flavor Genes And Their Regulatory Elements, Zhen Fan, Denise M Tieman, Steven J Knapp, Philipp Zerbe, Randi Famula, Christopher R Barbey, Kevin M Folta, Rodrigo R Amadeu, Manbo Lee, Youngjae Oh, Seonghee Lee, Vance M Whitaker

Student and Faculty Publications

Flavor is essential to consumer preference of foods and is an increasing focus of plant breeding programs. In fruit crops, identifying genes underlying volatile organic compounds has great promise to accelerate flavor improvement, but polyploidy and heterozygosity in many species have slowed progress. Here we use octoploid cultivated strawberry to demonstrate how genomic heterozygosity, transcriptomic intricacy and fruit metabolomic diversity can be treated as strengths and leveraged to uncover fruit flavor genes and their regulatory elements. Multi-omics datasets were generated including an expression quantitative trait loci map with 196 diverse breeding lines, haplotype-phased genomes of a highly-flavored breeding selection, a …


A Common Genetic Mechanism Underlies Morphological Diversity In Fruits And Other Plant Organs, Shan Wu, Biyao Zhang, Neda Keyhaninejad, Gustavo R. Rodríguez, Hyun Jung Kim, Manohar Chakrabarti, Eudald Illa-Berenguer, Nathan K. Taitano, M. J. Gonzalo, Aurora Díaz, Yupeng Pan, Courtney P. Leisner, Dennis Halterman, C. Robin Buell, Yiqun Weng, Shelley H. Jansky, Herman Van Eck, Johan Willemsen, Antonio J Monforte, Tea Meulia, Esther Van Der Knaap Nov 2018

A Common Genetic Mechanism Underlies Morphological Diversity In Fruits And Other Plant Organs, Shan Wu, Biyao Zhang, Neda Keyhaninejad, Gustavo R. Rodríguez, Hyun Jung Kim, Manohar Chakrabarti, Eudald Illa-Berenguer, Nathan K. Taitano, M. J. Gonzalo, Aurora Díaz, Yupeng Pan, Courtney P. Leisner, Dennis Halterman, C. Robin Buell, Yiqun Weng, Shelley H. Jansky, Herman Van Eck, Johan Willemsen, Antonio J Monforte, Tea Meulia, Esther Van Der Knaap

Plant and Soil Sciences Faculty Publications

Shapes of edible plant organs vary dramatically among and within crop plants. To explain and ultimately employ this variation towards crop improvement, we determined the genetic, molecular and cellular bases of fruit shape diversity in tomato. Through positional cloning, protein interaction studies, and genome editing, we report that OVATE Family Proteins and TONNEAU1 Recruiting Motif proteins regulate cell division patterns in ovary development to alter final fruit shape. The physical interactions between the members of these two families are necessary for dynamic relocalization of the protein complexes to different cellular compartments when expressed in tobacco leaf cells. Together with data …