Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Life Sciences

Joint Phenotypes, Evolutionary Conflict And The Fundamental Theorem Of Natural Selection, David C. Queller May 2014

Joint Phenotypes, Evolutionary Conflict And The Fundamental Theorem Of Natural Selection, David C. Queller

Biology Faculty Publications & Presentations

Multiple organisms can sometimes affect a common phenotype. For example, the portion of a leaf eaten by an insect is a joint phenotype of the plant and insect and the amount of food obtained by an offspring can be a joint trait with its mother. Here, I describe the evolution of joint phenotypes in quantitative genetic terms. A joint phenotype for multiple species evolves as the sum of additive genetic variances in each species, weighted by the selection on each species. Selective conflict between the interactants occurs when selection takes opposite signs on the joint phenotype. The mean fitness of …


Tree Climbing And Human Evolution, Vivek V. Venkataraman, Thomas S. Kraft, Nathaniel J. Dominy Jan 2013

Tree Climbing And Human Evolution, Vivek V. Venkataraman, Thomas S. Kraft, Nathaniel J. Dominy

Dartmouth Scholarship

Paleoanthropologists have long argued—often contentiously—about the climbing abilities of early hominins and whether a foot adapted to terrestrial bipedalism constrained regular access to trees. However, some modern humans climb tall trees routinely in pursuit of honey, fruit, and game, often without the aid of tools or support systems. Mortality and morbidity associated with facultative arboreality is expected to favor behaviors and anatomies that facilitate safe and efficient climbing. Here we show that Twa hunter–gatherers use extraordinary ankle dorsiflexion (>45°) during climbing, similar to the degree observed in wild chimpanzees. Although we did not detect a skeletal signature of dorsiflexion …


Sexually Antagonistic Selection, Sexual Dimorphism, And The Resolution Of Intralocus Sexual Conflict, Robert M. Cox, Ryan Calsbeek Feb 2009

Sexually Antagonistic Selection, Sexual Dimorphism, And The Resolution Of Intralocus Sexual Conflict, Robert M. Cox, Ryan Calsbeek

Dartmouth Scholarship

Males and females share most of their genomes and express many of the same traits, yet the sexes often have markedly different selective optima for these shared traits. This sexually antagonistic (SA) selection generates intralocus sexual conflict that is thought to be resolved through the evolution of sexual dimorphism. However, we currently know little about the prevalence of SA selection, the components of fitness that generate sexual antagonism, or the relationship between sexual dimorphism and current SA selection. We reviewed published studies to address these questions, using 424 selection estimates representing 89 traits from 34 species. Males and females often …


Integration Without Unification: An Argument For Pluralism In The Biological Sciences, Sandra D. Mitchell, Michael R. Dietrich Dec 2006

Integration Without Unification: An Argument For Pluralism In The Biological Sciences, Sandra D. Mitchell, Michael R. Dietrich

Dartmouth Scholarship

In this article, we consider the tension between unification and pluralism in biological theory. We begin with a consideration of historical efforts to establish a unified understanding of evolution in the neo‐Darwinian synthesis. The fragmentation of the evolutionary synthesis by molecular evolution suggests the limitations of the general unificationist ideal for biology but not necessarily for integrating explanations. In the second half of this article, we defend a specific variety of pluralism that allows for the integration required for explanations of complex phenomena without unification on a large scale.


Origin Of The Eumetazoa: Testing Ecological Predictions Of Molecular Clocks Against The Proterozoic Fossil Record, Kevin J. Peterson, Nicholas J. Butterfield Jul 2005

Origin Of The Eumetazoa: Testing Ecological Predictions Of Molecular Clocks Against The Proterozoic Fossil Record, Kevin J. Peterson, Nicholas J. Butterfield

Dartmouth Scholarship

Molecular clocks have the potential to shed light on the timing of early metazoan divergences, but differing algorithms and calibration points yield conspicuously discordant results. We argue here that competing molecular clock hypotheses should be testable in the fossil record, on the principle that fundamentally new grades of animal organization will have ecosystem-wide impacts. Using a set of seven nuclear-encoded protein sequences, we demonstrate the paraphyly of Porifera and calculate sponge/eumetazoan and cnidarian/bilaterian divergence times by using both distance [minimum evolution (ME)] and maximum likelihood (ML) molecular clocks; ME brackets the appearance of Eumetazoa between 634 and 604 Ma, whereas …