Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 31 - 34 of 34

Full-Text Articles in Life Sciences

Functional Plasticity Of Central Trpv1 Receptors In Brainstem Dorsal Vagal Complex Circuits Of Streptozotocin-Treated Hyperglycemic Mice, Andrea Zsombok, Muthu D. Bhaskaran, Hong Gao, Andrei V. Derbenev, Bret N. Smith Sep 2011

Functional Plasticity Of Central Trpv1 Receptors In Brainstem Dorsal Vagal Complex Circuits Of Streptozotocin-Treated Hyperglycemic Mice, Andrea Zsombok, Muthu D. Bhaskaran, Hong Gao, Andrei V. Derbenev, Bret N. Smith

Physiology Faculty Publications

Emerging data indicate that central neurons participate in diabetic processes by modulating autonomic output from neurons in the dorsal motor nucleus of the vagus (DMV). We tested the hypothesis that synaptic modulation by transient receptor potential vanilloid type 1 (TRPV1) receptors is reduced in the DMV in slices from a murine model of type 1 diabetes. The TRPV1 agonist capsaicin robustly enhanced glutamate release onto DMV neurons by acting at preterminal receptors in slices from intact mice, but failed to do so in slices from diabetic mice. TRPV1 receptor protein expression in the vagal complex was unaltered. Brief insulin preapplication …


Notch1 Functions As A Tumor Suppressor In A Model Of K-Ras–Induced Pancreatic Ductal Adenocarcinoma, Linda Hanlon, Jacqueline L Avila, Renée M Demarest, Scott Troutman, Megan Allen, Francesca Ratti, Anil K Rustgi, Ben Z Stanger, Fred Radtke, Volkan Adsay, Fenella Long, Anthony J Capobianco, Joseph L Kissil Jun 2010

Notch1 Functions As A Tumor Suppressor In A Model Of K-Ras–Induced Pancreatic Ductal Adenocarcinoma, Linda Hanlon, Jacqueline L Avila, Renée M Demarest, Scott Troutman, Megan Allen, Francesca Ratti, Anil K Rustgi, Ben Z Stanger, Fred Radtke, Volkan Adsay, Fenella Long, Anthony J Capobianco, Joseph L Kissil

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

K-ras is the most commonly mutated oncogene in pancreatic cancer and its activation in murine models is sufficient to recapitulate the spectrum of lesions seen in human pancreatic ductal adenocarcinoma (PDAC). Recent studies suggest that Notch receptor signaling becomes reactivated in a subset of PDACs, leading to the hypothesis that Notch1 functions as an oncogene in this setting. To determine whether Notch1 is required for K-ras-induced tumorigenesis, we used a mouse model in which an oncogenic allele of K-ras is activated and Notch1 is deleted simultaneously in the pancreas. Unexpectedly, the loss of Notch1 in this model resulted in increased …


The Cd154/Cd40 Interaction Required For Retrovirus-Induced Murine Immunodeficiency Syndrome Is Not Mediated By Upregulation Of The Cd80/Cd86 Costimulatory Molecules, Kathy A. Green, W. James Cook, Arlene H. Sharpe, William R. Green Nov 2002

The Cd154/Cd40 Interaction Required For Retrovirus-Induced Murine Immunodeficiency Syndrome Is Not Mediated By Upregulation Of The Cd80/Cd86 Costimulatory Molecules, Kathy A. Green, W. James Cook, Arlene H. Sharpe, William R. Green

Dartmouth Scholarship

C57BL/6 (B6) mice infected with LP-BM5 retroviruses develop disease, including an immunodeficiency similar to AIDS. This disease, murine AIDS (MAIDS), is inhibited by in vivo anti-CD154 monoclonal antibody treatment. The similar levels of insusceptibility of CD40−/− and CD154−/− B6 mice indicate that CD154/CD40 molecular interactions are required for MAIDS. CD4+ T and B cells, respectively, provide the CD154 and CD40 expression needed for MAIDS induction. Here, the required CD154/CD40 interaction is shown to be independent of CD80 and CD86 expression: CD80/CD86−/− B6 mice develop MAIDS after LP-BM5 infection.


Cytolytic T Lymphocytes Specific For Tumors And Infected Cells From Mice With A Retrovirus-Induced Immunodeficiency Syndrome., Jennifer G. Erbe, Kathy A. Green, Karen M. Crassi, Herbert C. Morse, W R. Green May 1992

Cytolytic T Lymphocytes Specific For Tumors And Infected Cells From Mice With A Retrovirus-Induced Immunodeficiency Syndrome., Jennifer G. Erbe, Kathy A. Green, Karen M. Crassi, Herbert C. Morse, W R. Green

Dartmouth Scholarship

LP-BM5 retrovirus complex-infected C57BL/6 mice develop immunodeficiency, somewhat analogous to AIDS, termed murine AIDS (MAIDS). After secondary stimulation with syngeneic B-cell lymphomas from LP-BM5-infected mice, C57BL/6 mice produced vigorous CD8+ cytotoxic T lymphocytes specific for MAIDS-associated tumors. An anti-LP-BM5 specificity was suggested because spleen and lymph node cells from LP-BM5-infected mice served as target cells in competition assays, and cells from LP-BM5, but not ecotropic, virus-infected mice functioned as secondary in vitro stimulators to generate cytotoxic T lymphocytes to MAIDS tumors.