Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Mitochondria In Energy-Limited States : Mechanisms That Blunt The Signaling Of Cell Death., Steven Hand, Michael Menze Jan 2008

Mitochondria In Energy-Limited States : Mechanisms That Blunt The Signaling Of Cell Death., Steven Hand, Michael Menze

Faculty Scholarship

Cellular conditions experienced during energy-limited states – elevated calcium, shifts in cellular adenylate status, compromised mitochondrial membrane potential – are precisely those that trigger, at least in mammals, the mitochondrion to initiate opening of the permeability transition pore, to assemble additional protein release channels, and to release pro-apoptotic factors. These proapototic factors in turn activate initiator and executer caspases. How is activation of mitochondria-based pathways for the signaling of apoptotic and necrotic cell death avoided under conditions of hypoxia, anoxia, diapause, estivation and anhydrobiosis? Functional trade-offs in environmental tolerance may have occurred in parallel with the evolution of diversified pathways …


Mitochondria In Energy-Limited States: Mechanisms That Blunt The Signaling Of Cell Death, Steven C. Hand, Michael A. Menze Jan 2008

Mitochondria In Energy-Limited States: Mechanisms That Blunt The Signaling Of Cell Death, Steven C. Hand, Michael A. Menze

Faculty Research & Creative Activity

Cellular conditions experienced during energy-limited states – elevated calcium, shifts in cellular adenylate status, compromised mitochondrial membrane potential – are precisely those that trigger, at least in mammals, the mitochondrion to initiate opening of the permeability transition pore, to assemble additional protein release channels, and to release pro-apoptotic factors. These proapototic factors in turn activate initiator and executer caspases. How is activation of mitochondria-based pathways for the signaling of apoptotic and necrotic cell death avoided under conditions of hypoxia, anoxia, diapause, estivation and anhydrobiosis? Functional trade-offs in environmental tolerance may have occurred in parallel with the evolution of diversified pathways …