Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Life Sciences

The C-Phycocyanin/Beta Protein Inhibits Cancer Cell Proliferation, Haizhen Wang Apr 2008

The C-Phycocyanin/Beta Protein Inhibits Cancer Cell Proliferation, Haizhen Wang

Biology Theses

C-Phycocyanin (C-PC) from blue-green algae has been reported to have various pharmacological characteristics, including anti-inflammatory and anti-cancer activities. In this study, the beta-subunit of C-PC (ref to as C-PC/beta) was expressed and purified from bacteria E. coli BL-21. The recombinant C-PC/beta has been demonstrated to have anticancer properties. Under the treatment of 5 microM of the recombinant C-PC/beta, four different cancer cell lines accrued a high proliferation inhibition and apoptotic induction. The C-PC/beta interacts with membrane-associated beta-tubulin and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been found. Under the treatment of the C-PC/beta, depolymerization of microtubulin and actin-filament was observed. The cells underwent …


Mitochondria In Energy-Limited States: Mechanisms That Blunt The Signaling Of Cell Death, Steven C. Hand, Michael A. Menze Jan 2008

Mitochondria In Energy-Limited States: Mechanisms That Blunt The Signaling Of Cell Death, Steven C. Hand, Michael A. Menze

Michael Menze

Cellular conditions experienced during energy-limited states – elevated calcium, shifts in cellular adenylate status, compromised mitochondrial membrane potential – are precisely those that trigger, at least in mammals, the mitochondrion to initiate opening of the permeability transition pore, to assemble additional protein release channels, and to release pro-apoptotic factors. These proapototic factors in turn activate initiator and executer caspases. How is activation of mitochondria-based pathways for the signaling of apoptotic and necrotic cell death avoided under conditions of hypoxia, anoxia, diapause, estivation and anhydrobiosis? Functional trade-offs in environmental tolerance may have occurred in parallel with the evolution of diversified pathways …


Mitochondria In Energy-Limited States: Mechanisms That Blunt The Signaling Of Cell Death, Steven C. Hand, Michael A. Menze Jan 2008

Mitochondria In Energy-Limited States: Mechanisms That Blunt The Signaling Of Cell Death, Steven C. Hand, Michael A. Menze

Faculty Research & Creative Activity

Cellular conditions experienced during energy-limited states – elevated calcium, shifts in cellular adenylate status, compromised mitochondrial membrane potential – are precisely those that trigger, at least in mammals, the mitochondrion to initiate opening of the permeability transition pore, to assemble additional protein release channels, and to release pro-apoptotic factors. These proapototic factors in turn activate initiator and executer caspases. How is activation of mitochondria-based pathways for the signaling of apoptotic and necrotic cell death avoided under conditions of hypoxia, anoxia, diapause, estivation and anhydrobiosis? Functional trade-offs in environmental tolerance may have occurred in parallel with the evolution of diversified pathways …


Mitochondria In Energy-Limited States : Mechanisms That Blunt The Signaling Of Cell Death., Steven Hand, Michael Menze Jan 2008

Mitochondria In Energy-Limited States : Mechanisms That Blunt The Signaling Of Cell Death., Steven Hand, Michael Menze

Faculty Scholarship

Cellular conditions experienced during energy-limited states – elevated calcium, shifts in cellular adenylate status, compromised mitochondrial membrane potential – are precisely those that trigger, at least in mammals, the mitochondrion to initiate opening of the permeability transition pore, to assemble additional protein release channels, and to release pro-apoptotic factors. These proapototic factors in turn activate initiator and executer caspases. How is activation of mitochondria-based pathways for the signaling of apoptotic and necrotic cell death avoided under conditions of hypoxia, anoxia, diapause, estivation and anhydrobiosis? Functional trade-offs in environmental tolerance may have occurred in parallel with the evolution of diversified pathways …