Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 239

Full-Text Articles in Life Sciences

Assessing The Pre- And Post-Synaptic Effects Of Opioids On Inspiratory Rhythmogenesis, Jingzhi Zhao, Diego Morandi Zerpa May 2024

Assessing The Pre- And Post-Synaptic Effects Of Opioids On Inspiratory Rhythmogenesis, Jingzhi Zhao, Diego Morandi Zerpa

Biology and Medicine Through Mathematics Conference

No abstract provided.


Mechanistic Analysis Of Four-Way Dna Junctions And Cytokine-Binding Aptamers For Therapeutic Interventions, Roaa S. Mahmoud Jan 2024

Mechanistic Analysis Of Four-Way Dna Junctions And Cytokine-Binding Aptamers For Therapeutic Interventions, Roaa S. Mahmoud

Theses and Dissertations

DNA is inherently dynamic and topologically diverse and can fold into many different structures. Besides the canonical Watson-Crick structure, other higher-order structures such as G-quadruplexes (G4), i-motifs (iM), and four-way DNA junctions are possible. Although these high-order DNA structures are known to form transiently, they are important due to the crucial roles they play in many cellular processes including DNA replication, recombination, and repair. Among these DNA structures, 4-way junctions (also known as Holliday junctions, HJ) which are formed during the repair of double-strand DNA breaks (DSBs) and interact with proteins have garnered significant attention due to their central role …


Protacs – A Novel And Rapidly Developing Field Of Targeted Protein Degradation, Hannah R. Gatley Jan 2023

Protacs – A Novel And Rapidly Developing Field Of Targeted Protein Degradation, Hannah R. Gatley

Theses and Dissertations

There is a continued need for new technology and strategies for tackling cancer and other diseases, and within the current century a novel therapeutic strategy has emerged in the realm of targeted protein degradation called Proteolysis-Targeting Chimeras (PROTACs). This technology specifically targets and degrades disease-causing proteins via the ubiquitin-proteasome system, and has seen an explosion of research and intrigue in both academia and industry over the past two decades. The diversity of PROTAC classes based on the E3 ligase recruiting ligand and the target protein allows for a universal molecular structure that can be customized for a specific target and …


The Type Iv Pilus Secretin Bfpb: Structural Analysis And Binding Interactions, Janay I. Little Jan 2023

The Type Iv Pilus Secretin Bfpb: Structural Analysis And Binding Interactions, Janay I. Little

Theses and Dissertations

Enteropathogenic Escherichia coli (EPEC) causes severe diarrhea in young children. The type IV pilus (T4P) of EPEC, known as the bundle-forming pilus (BFP), plays an important role in EPEC pathogenesis. T4Ps are a family of surface appendages that are important for adhesion, colonization, biofilm formation, virulence, twitching motility and many other functions. One essential component of the BFP system is the secretin, BfpB. Secretins are a large family of integral outer membrane proteins found in T4Ps as well as type II and type III secretion systems, and filamentous phages. Details of the secretin structure have been limited to the overall …


Treponema Denticola Synthesizes C-Di-Amp And Encodes The Cdaa-Type Diadenylate Cyclase Cdaa, Claire R. O'Brien Jan 2023

Treponema Denticola Synthesizes C-Di-Amp And Encodes The Cdaa-Type Diadenylate Cyclase Cdaa, Claire R. O'Brien

Theses and Dissertations

Periodontitis is a form of oral disease characterized by dysbiosis of the oral microbiome, leading to inflammation, bone resorption, and in severe cases, entire tooth loss, affecting 42% of adults in the US. One of the bacteria most associated with periodontal disease progression is Treponema denticola (Td), an oral spirochete which inhabits the mouth in small quantities during health but which can dominate the biofilms that form during periodontal disease. The ability of Td to survive in a disease environment and contribute to the progression of disease requires the use of robust signaling networks. Analysis of Td cultures …


Observing Ceramide Pathway With Ferroptosis Via Mia Paca-2 Cell Treatment With Rsl3, Tazrin Rahman Jan 2023

Observing Ceramide Pathway With Ferroptosis Via Mia Paca-2 Cell Treatment With Rsl3, Tazrin Rahman

Auctus: The Journal of Undergraduate Research and Creative Scholarship

Composed of sphingosine and a fatty acid, ceramides are lipid molecules that serve as key metabolic signaling molecules of a sphingolipid pathway. While it acts as a precursor of complex sphingolipids, inducing ceramide generation can cause cell stress leading to subsequent cell death via apoptosis, necrosis, and even mitophagy. With regards to cell death specifically, a novel form of regulated cell death, ferroptosis, has recently been recognized of necrotic nature. Its unique morphological features and distinct properties have been observed over the last several decades; however, the molecular features were not identifiable as pure evidence of cell death, until recently …


Structural Analysis Of Predicted Proteins Using Alphafold, Brydon P. Wall Jan 2023

Structural Analysis Of Predicted Proteins Using Alphafold, Brydon P. Wall

Undergraduate Research Posters

The function of around 67% of predicted proteins from genes in Mycobacteriophage CheetoDust can not be confidently predicted using traditional techniques and can only be functionally labeled “hypothetical proteins”. However, a new approach using AlphaFold, an artificial intelligence tool to generate a structural prediction from a sequence, can take advantage of structurally conserved regions that were previously obfuscated to gain new insights and visualize data in new ways.

Since amino acid sequences are more conserved than its corresponding DNA sequence, amino acid sequences are used when predicting the function of the corresponding translated protein. Until recently, predicting structure from an …


Gestational Vulnerability To Ozone Air Pollution - A Placental Story, Vishnupriya Alavala, Sarah Brent, Russell Hunter, Matthew J. Campen, Andrew Ottens Jan 2023

Gestational Vulnerability To Ozone Air Pollution - A Placental Story, Vishnupriya Alavala, Sarah Brent, Russell Hunter, Matthew J. Campen, Andrew Ottens

Undergraduate Research Posters

About 99% of the global population resides in areas with air pollution surpassing World Health Organization standards. Air pollution is associated with adverse neonatal health outcomes such as low fetal birth weight and an increased risk for maternal pre-eclampsia. A particularly reactive air pollutant is ozone, which forms reactive oxygen species that induce cellular damage. Research exists on the dispersion of reactive oxygen species through the bloodstream leading to fetal vulnerability during pregnancy, specifically via the placenta. Yet, placental and fetal development is a temporal process with varied susceptibility to negative gestational outcomes.

To addressing this gap, our laboratory utilized …


Inferring Dynamics Of Biological Systems, Tracey G. Oellerich May 2022

Inferring Dynamics Of Biological Systems, Tracey G. Oellerich

Biology and Medicine Through Mathematics Conference

No abstract provided.


The Role Of Irf-1 In Spontaneous Mouse Glioma, Aakash B. Vaidya Jan 2022

The Role Of Irf-1 In Spontaneous Mouse Glioma, Aakash B. Vaidya

Theses and Dissertations

Glioblastoma Multiforme has been shown to be one of the deadliest primary brain cancers. One of the reasons why GBM is so deadly, is a unique immunosuppressive tumor microenvironment that promotes GBM growth and progression. Both astrocyte and microglia have been implicated in immunosuppression. In this study, we explored the role of Interferon Regulatory Factor 1 (IRF-1) in astrocytes and glioma cells on the growth of spontaneous glioma tumors. IRF-1 is regulated by the JAK/STAT pathway and induces expression of Programmed death ligand 1 (PD-L1). PD-L1 downregulates immune responses to glioma. We found that IRF-1 had no effect on spontaneous …


Protein Structure And Interaction: The Role Of Aromatic Residues In Protein Structure And Interactions Between Pyridoxine 5'-Phosphate Oxidase/Dopa Decarboxylase, Mohammed H. Al Mughram Jan 2022

Protein Structure And Interaction: The Role Of Aromatic Residues In Protein Structure And Interactions Between Pyridoxine 5'-Phosphate Oxidase/Dopa Decarboxylase, Mohammed H. Al Mughram

Theses and Dissertations

Naturally developed proteins are capable of carrying out a wide variety of molecular functions due to their highly precise three-dimensional structures, which are determined by their genetically encoded sequences of amino acids. A thorough knowledge of protein structures and interactions at the atomic level will enable researchers to get a deep foundational understanding of the molecular interactions and enzymatic processes required for cells, resulting in more effective therapeutic interventions. This dissertation intends to use structural knowledge from solved protein structures for two distinct objectives.

In the first project, we conducted a bioinformatics structural analysis of experimental protein structures using our …


Targeting Bcl-2 Family Proteins In Therapy Induced Senescent Cancer Cell Models, Wade Cook Jan 2022

Targeting Bcl-2 Family Proteins In Therapy Induced Senescent Cancer Cell Models, Wade Cook

Theses and Dissertations

Non-small Cell Lung Cancer (NSCLC) originates from numerous different cell types in the lungs and is among the deadliest of cancers. Head and Neck Squamous Cell Carcinomas (HNSCC) are derived from the mucosal membranes of the oral cavity, pharynx, and larynx. Both NSCLC and HNSCC are predominately caused by tobacco smoke inhalation and as such mutations in the tumor suppressor gene TP53 are common. Since similarities exist in the root cause of NSCLC and HNSCC, they may also share similarities in treatment methods. Cisplatin is a platinum-based DNA damaging agent that has been used as a cancer chemotherapy for decades. …


Structure-Based Drug Discovery And Development Of Protein Structure Prediction Tools Using An Empirical Force Field, Noah B. Herrington Jan 2022

Structure-Based Drug Discovery And Development Of Protein Structure Prediction Tools Using An Empirical Force Field, Noah B. Herrington

Theses and Dissertations

Traditional drug discovery has rapidly accelerated thanks to development of computational molecular modeling. The crucial component that these computational studies hinge upon is having a well-defined, and energetically favorable structure. Structures of proteins and ligands that meet these criteria are important for accurately simulating models used to study drug binding. To demonstrate the role of accurate structure simulation in the study of these events, this thesis presents, first, a story examining the problem of accurate structure modeling of ionizable residues within protein structures, specifically aspartic acid, glutamic acid, and histidine. I present our method, which uses the HINT force field …


Review Of The Effects Of Asphalt Fume Emission (Vocs And Pahs) In Vitro, In Vivo And Human Studies, Omran Taqi, Nastassja Lewinski, Elham Fini, Eran Rozewski, Judith Klein-Seetharaman Jan 2022

Review Of The Effects Of Asphalt Fume Emission (Vocs And Pahs) In Vitro, In Vivo And Human Studies, Omran Taqi, Nastassja Lewinski, Elham Fini, Eran Rozewski, Judith Klein-Seetharaman

Undergraduate Research Posters

Review of the effects of Asphalt fume emission (VOCs and PAHs) in vitro, in vivo and human studies

Omran Taqi, Nastassja Lewinski1

1) Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA

Background

Asphalt is abundantly available around human operations including road paving and roofing sites. However, their emissions and fumes (specifically volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs)) have been found to have adverse effects on health. Asphalt fumes are a class 2A carcinogen and exposure can increase the risk of lung cancer, asthma, headache, fatigue, and other cardiovascular diseases.

Methods

We used …


Quantitative Pcr And Sanger Sequencing Of Mitochondrial Dna Recovered From Waterlogged Bone, Kailey Babcock Jan 2021

Quantitative Pcr And Sanger Sequencing Of Mitochondrial Dna Recovered From Waterlogged Bone, Kailey Babcock

Theses and Dissertations

In forensic contexts, samples containing heavily fragmented DNA are commonly encountered. Compromised biological samples are especially prevalent in instances where human remains have been submerged in an aqueous environment for extended periods of time. Nuclear DNA is particularly vulnerable to the prolonged exposure to heat, moisture, and bacterial degradation that are prevalent in aquatic settings. Paired with the difficulty of recovering DNA from skeletal remains, which are often the only remaining component after the soft tissues have been stripped away, mitochondrial DNA (mtDNA) analysis serves as an invaluable alternative. In this multifaceted study, mtDNA analysis was performed on waterlogged bone …


Development And Evaluation Of A Combinatorial Rt-Qpcr Multiplex For Forensic Body Fluid Identification, Carolyn A. Lewis Jan 2021

Development And Evaluation Of A Combinatorial Rt-Qpcr Multiplex For Forensic Body Fluid Identification, Carolyn A. Lewis

Theses and Dissertations

Body fluid identification is essential in the forensic biology workflow that assists DNA analysts in determining where to collect DNA evidence. Current presumptive tests lack the sensitivity and specificity molecular techniques can achieve; therefore, molecular methods, such as microRNA and microbial signatures, have been extensively researched in the forensic community. Limitations of each method suggest combining molecular markers to increase discrimination efficiency of multiple body fluids from a single assay. While microbial signatures have been successful in identifying fluids with high bacterial abundances, microRNAs have shown promise in fluids with low microbial abundance. A disadvantage of RNA analysis in forensic …


Transcriptional Repressor Protein Based Macrolide Biosensor Development With Improved Sensitivity, Jayani A. Christopher Jan 2021

Transcriptional Repressor Protein Based Macrolide Biosensor Development With Improved Sensitivity, Jayani A. Christopher

Graduate Research Posters

Macrolide antibiotics are in high demand for clinical applications. Macrolides are biosynthesized via giant assembly line polyketide synthases (PKS) which are arranged in a modular fashion. Combinatorial biosynthetic methods have been used to produce diversified macrolides by reprograming these modules and modifying tailoring enzymes required for post synthetic modifications. However it is challenging due to the size and complexity of PKSs. To overcome this challenge, new enzymes for macrolide diversification could be obtained by directed evolution where a large number of enzyme variants need to be screened. Therefore it is important to develop high throughput screening methods to identify the …


Influence Of Metal Sleeves In The Accuracy Of Dental Implant Placement Using Guided Implant Surgery, Coleman Adams Jan 2021

Influence Of Metal Sleeves In The Accuracy Of Dental Implant Placement Using Guided Implant Surgery, Coleman Adams

Theses and Dissertations

The fabrication of implant surgical guides through stereolithographic 3D printing has become a staple in dental implant guided surgery over the last couple decades. These surgical guides have typically utilized metal sleeves to assist in guidance of the drills during osteotome preparation. The metal sleeves can be costly and potentially cause deviations if improperly placed during post-processing of the guide. This research explored a novel method for the utilization of sleeve-free surgical guides by comparing the dimensional and angulational deviations between the implant guides with and without a metal sleeve. To achieve this goal, two separate aims were pursued. Our …


Computational Analysis And Prediction Of Intrinsic Disorder And Intrinsic Disorder Functions In Proteins, Akila I. Katuwawala Jan 2021

Computational Analysis And Prediction Of Intrinsic Disorder And Intrinsic Disorder Functions In Proteins, Akila I. Katuwawala

Theses and Dissertations

COMPUTATIONAL ANALYSIS AND PREDICTION OF INTRINSIC DISORDER AND INTRINSIC DISORDER FUNCTIONS IN PROTEINS

By Akila Imesha Katuwawala

A dissertation submitted in partial fulfillment of the requirements for the degree of Engineering, Doctor of Philosophy with a concentration in Computer Science at Virginia Commonwealth University.

Virginia Commonwealth University, 2021

Director: Lukasz Kurgan, Professor, Department of Computer Science

Proteins, as a fundamental class of biomolecules, have been studied from various perspectives over the past two centuries. The traditional notion is that proteins require fixed and stable three-dimensional structures to carry out biological functions. However, there is mounting evidence regarding a “special” class …


Muscarinic Excitation Of Dopamine Neurons In The Ventral Tegmental Area Via Activation Of A Trpc-Like Cation Conductance, Yu Tzu Chen Jan 2021

Muscarinic Excitation Of Dopamine Neurons In The Ventral Tegmental Area Via Activation Of A Trpc-Like Cation Conductance, Yu Tzu Chen

Theses and Dissertations

Dopaminergic (DA) neurons in the ventral tegmental area (VTA) play a crucial role in reward and motivational behaviors, including the development of drug addictions. VTA DA neurons receive excitatory cholinergic inputs from the mesopontine tegmentum. Blockage of the M5 muscarinic receptor in DA neurons has been shown to attenuate drug-induced DA release and abuse-related behaviors, but the molecular mechanism is unknown. In this study, experiments were designed to identify the electrophysiological effects of muscarinic agonism in the modulation of action potential kinetics and firing patterns in VTA DA neurons of mice. Pharmacology of the muscarinic receptor-evoked current was also characterized. …


Interclass Gpcr Heteromerization Affects Localization And Trafficking, Rudy Toneatti Jan 2021

Interclass Gpcr Heteromerization Affects Localization And Trafficking, Rudy Toneatti

Theses and Dissertations

Class A serotonin (5-hydroxytryptamine) 2A (5-HT2AR) and class C metabotropic glutamate 2 receptors (mGluR2) are seven transmembrane receptors (7TMRs or G protein-coupled receptors – GPCRs) involved in multiple neuropsychiatric disorders including schizophrenia. Previous findings from our laboratory reported that 5-HT2AR and mGluR2 are dysregulated in the prefrontal cortex of patients suffering from this psychiatric condition, although 5-HT2AR’s expression was recovered in antipsychotic-medicated patients. Genome-wide association studies on schizophrenia reported that endosomal trafficking that regulates cell surface abundance of another 7TMR implicated in this disease (dopamine D2 receptor) can be altered. Ligand-activated receptors, including the …


Single Molecule Investigations Of Holliday Junction Binding Protein Ruva, Dalton Reed Gibbs Jan 2021

Single Molecule Investigations Of Holliday Junction Binding Protein Ruva, Dalton Reed Gibbs

Theses and Dissertations

DNA breaks are inevitable as they mainly occur due to cells’ own reactive oxygen species (ROS). While DNA breaks can be single-stranded or double-stranded, the double-stranded DNA (dsDNA) breaks are more dangerous. If such damage is not repaired, it can lead to genetic instability and serious health issues including cancers. One way dsDNA breaks can be repaired is via a process called homologous recombination (HR), which involves several DNA-binding proteins. Therefore, to have a better insight into the repair mechanism and origin of repair defects, we need a better understanding of how these proteins interact with DNA itself and DNA …


A Mechanism Behind The Mechanotransduction Of Surface Characteristics In Osteoblasts, Otto J. Juhl Iv Jan 2021

A Mechanism Behind The Mechanotransduction Of Surface Characteristics In Osteoblasts, Otto J. Juhl Iv

Theses and Dissertations

Biomaterials for use in bone regeneration and healing range from metal and metal alloy implants to hydrogel-based solutions. These materials can be optimized to increase bone healing and integration by improving the mechanical and biological properties. Regardless of the material itself, the cell-substrate interaction is key to the success of the biomaterial once implanted. Substrate surface characteristics such as roughness, wettability, and particle density are well-known contributors to a substrate’s overall osteogenic potential, and therefore the substrate's overall success. Unfortunately, it is still unknown how these substrate surface characteristics are transduced into intracellular signals by cells, preventing specific tailoring of …


A Novel Review Of Heat Shock Protein 110 Kda: A Basis For Research And Continued Experimentation Through Biochemical Analysis, Crist W. Cuffee Jan 2021

A Novel Review Of Heat Shock Protein 110 Kda: A Basis For Research And Continued Experimentation Through Biochemical Analysis, Crist W. Cuffee

Theses and Dissertations

Heat shock protein 110 kDa, Hsp110, is a distinct cellular protector, different in form and function from Hsp70, a close relative of Hsp110. Functioning primarily as a holdase or in tandem with other molecular chaperones, a review of current accomplishments elucidates the uniqueness of this protein and the continued mysteries that surrounds it. Found only in eukaryotes, Hsp110 has been linked to many diseases, ranging from parasitic infection to neurodegenerative disorders. While still lacking, studies of this protein have provided much in the realm of speculation on the mechanisms behind Hsp110s’ contribution to different pathologies. This review will serve as …


Quantitative Pcr And Sanger Sequencing Of Mitochondrial Dna Recovered From Waterlogged Bone, Kailey Babcock Jan 2021

Quantitative Pcr And Sanger Sequencing Of Mitochondrial Dna Recovered From Waterlogged Bone, Kailey Babcock

Master of Science in Forensic Science Directed Research Projects

In forensic contexts, samples containing heavily fragmented DNA are commonly encountered. Compromised biological samples are especially prevalent in instances where human remains have been submerged in an aqueous environment for extended periods of time. Nuclear DNA is particularly vulnerable to the prolonged exposure to heat, moisture, and bacterial degradation that are prevalent in aquatic settings. Paired with the difficulty of recovering DNA from skeletal remains, which are often the only remaining component after the soft tissues have been stripped away, mitochondrial DNA (mtDNA) analysis serves as an invaluable alternative. In this multifaceted study, mtDNA analysis was performed on waterlogged bone …


Exploring The Connection Between The Spontaneous Regression Seen In Neuroblastomas, Hypertumors, And Reactive Oxygen Species, Shahad Musa, Manitha Mulpuru Jan 2021

Exploring The Connection Between The Spontaneous Regression Seen In Neuroblastomas, Hypertumors, And Reactive Oxygen Species, Shahad Musa, Manitha Mulpuru

Auctus: The Journal of Undergraduate Research and Creative Scholarship

Peto’s Paradox is defined as the lack of correlation between larger animals and cancer risk. Under the assumption that all cells have equal risk of becoming cancerous, larger animals should have greater rates of cancer. However, the inverse is true. Determining the cause of this variation may allow a supplemental approach to cancer treatment. A combination of two reasons may account for this correlation including hypertumors and metabolism. Hypertumors, or cheater cells, are hypothesized to suppress cancer growth through spontaneous autophagic degradation and overexpression of the RAS g-protein. Both of these characteristics are exhibited in Neuroblastomas. An anticancer drug used …


Nonlinear Control Of Biological Dynamical Systems, Megan J. Morrison May 2020

Nonlinear Control Of Biological Dynamical Systems, Megan J. Morrison

Biology and Medicine Through Mathematics Conference

No abstract provided.


The Impact Of Aging And Mechanical Injury On Alveolar Epithelial And Macrophage Responses In Acute Lung Injury And Inflammation, Michael S. Valentine Jan 2020

The Impact Of Aging And Mechanical Injury On Alveolar Epithelial And Macrophage Responses In Acute Lung Injury And Inflammation, Michael S. Valentine

Theses and Dissertations

Patients with severe lung pathologies, such as Acute Respiratory Distress Syndrome (ARDS), often require mechanical ventilation as a clinical intervention; however, this procedure frequently exacerbates the original pulmonary issue and produces an exaggerated inflammatory response that potentially leads to sepsis, multisystem organ failure, and mortality. This acute lung injury (ALI) condition has been termed Ventilator-Induced Lung Injury (VILI). Alveolar overdistension, cyclic atelectasis, and biotrauma are the primary injury mechanisms in VILI that lead to the loss of alveolar barrier integrity and pulmonary inflammation. Stress and strains during mechanical ventilation are believed to initiate alveolar epithelial mechanotransduction signaling mechanisms that contribute …


Characterization Of The Dyrk1a Protein-Protein Interaction Network, Varsha Ananthapadmanabhan Jan 2020

Characterization Of The Dyrk1a Protein-Protein Interaction Network, Varsha Ananthapadmanabhan

Theses and Dissertations

Human Dual specificity tyrosine (Y)-Regulated Kinase 1A (DYRK1A) is a protein kinase encoded by a dosage-dependent gene. An extra copy of DYRK1A contributes to Down syndrome (DS) pathogenesis while loss of one allele causes severe mental retardation and autism. DYRK1A is involved in phosphorylation of several proteins that regulate cell cycle control and tumor suppression. However, the function and regulation of this kinase is not well understood and current knowledge does not fully explain dosage-dependent function of this important kinase. Our previous proteomic studies identified several novel DYRK1A interacting proteins including RNF169, FAM117B, TROAP, LZTS1, LZTS2 and DCAF7. In this …


Characterization Of The Tsc/Dyrk1a Interaction, Supriya Joshi Jan 2020

Characterization Of The Tsc/Dyrk1a Interaction, Supriya Joshi

Theses and Dissertations

The Tuberous sclerosis complex (TSC) includes TSC1, TSC2 and the TBC1D7 subunits that together function as a principal inhibitor of the mTOR protein kinase complex 1 (mTORC1). mTORC1 is a master regulator of cell growth and proliferation that responds to signaling cues such as growth factors and nutrient availability. Proteomic studies in our lab revealed an interaction between the TSC subunits and DYRK1A, a ubiquitous protein kinase encoded by a gene located in the Down syndrome (DS) region on human chr21. In this study, we sought to validate the interaction of the TSC components with DYRK1A and to determine the …