Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Life Sciences

Computational Molecular Docking Models And Design Of Diarylpentanoids For The Androgen Receptor, Jarett Guillow May 2020

Computational Molecular Docking Models And Design Of Diarylpentanoids For The Androgen Receptor, Jarett Guillow

Computational and Data Sciences (MS) Theses

The androgen receptor (AR) is a member of the nuclear receptor protein family that, upon binding to its natural ligand dihydrotestosterone (DHT) in the cytoplasm, translocates to the nucleus and exerts nuclear transcription factor activity to drive gene expression related to normal prostate development. AR signaling becomes overactive during the development and progression of prostate cancer through different mechanisms, including over-expression and mutation of the AR. Therefore, the AR is a prominent molecular target in the clinical management of prostate cancer. However, all therapeutic modalities targeting the AR, including androgen ablation therapy and AR block suffer from transient efficacy and …


Structure Based Inhibitor Discovery Targeting Multiple Β-Lactamases Involved In Antibiotic Resistance, Afroza Akhtar Feb 2020

Structure Based Inhibitor Discovery Targeting Multiple Β-Lactamases Involved In Antibiotic Resistance, Afroza Akhtar

USF Tampa Graduate Theses and Dissertations

Emergence of antibiotic resistance severely threatens the existing medication and prevention facilities against an over increasing range of infections caused by a wide range of microbes. Specifically, treatment of Gram-negative bacterial infection is getting more problematic due to their resilience against β-lactam antibiotics: the most commonly prescribed antibiotics in clinical settings. Production of β-lactamases is the most prevalent mechanism utilized by various Gram-negative pathogens to become resistant to the β-lactam antibiotics e.g, penicillins, cephalosporins, carbapenems and monobactams. These enzymes mediate their function through hydrolyzing the core β-lactam ring present in all β-lactam antibiotics which causes opening of the ring and …


Mechanism Elucidation And Inhibitor Discovery Against Serine And Metallo-Beta-Lactamases Involved In Bacterial Antibiotic Resistance, Orville A. Pemberton Nov 2017

Mechanism Elucidation And Inhibitor Discovery Against Serine And Metallo-Beta-Lactamases Involved In Bacterial Antibiotic Resistance, Orville A. Pemberton

USF Tampa Graduate Theses and Dissertations

The emergence and proliferation of Gram-negative bacteria expressing β-lactamases is a significant threat to human health. β-Lactamases are enzymes that degrade the β-lactam antibiotics (e.g., penicillins, cephalosporins, monobactams, and carbapenems) that we use to treat a diverse range of bacterial infections. Specifically, β-lactamases catalyze a hydrolysis reaction where the β-lactam ring common to all β-lactam antibiotics and responsible for their antibacterial activity, is opened, leaving an inactive drug. There are two groups of β-lactamases: serine enzymes that use an active site serine residue for β-lactam hydrolysis and metalloenzymes that use either one or two zinc ions for catalysis. Serine enzymes …