Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Life Sciences

Sars-Cov-2 Main Protease Inhibitors Repurposed For Hiv-1 Protease Binding, Jacob Minkkinen Apr 2022

Sars-Cov-2 Main Protease Inhibitors Repurposed For Hiv-1 Protease Binding, Jacob Minkkinen

CSB and SJU Distinguished Thesis

Severe acute respiratory syndrome (SARS-CoV-2) led to the COVID-19 global pandemic, with over 460 million cases of infection and over 6 million deaths since the start of the pandemic. SARS-CoV-2 is a retrovirus that utilizes a main protease (Mpro). Mpro is a catalytic cys/his protease. Several treatments were proposed to stop the pandemic including repurposing drugs to inhibit the Mpro. Another retrovirus that uses a protease is human immunodeficiency virus (HIV-1) which has been a global epidemic for 40 years and is a devastating disease that attacks the immune system. HIV-1 has infected 79.5 million people and has killed an …


Repurposing Lansoprazole And Posaconazole To Treat Leishmaniasis: Integration Of In Vitro Testing, Pharmacological Corroboration, And Mechanisms Of Action, Yash Gupta, Steven Goicoechea, Jesus G. Romero, Raman Mathur, Thomas R. Caulfield, Daniel P. Becker, Ravi Durvasula, Prakasha Kempaiah Mar 2022

Repurposing Lansoprazole And Posaconazole To Treat Leishmaniasis: Integration Of In Vitro Testing, Pharmacological Corroboration, And Mechanisms Of Action, Yash Gupta, Steven Goicoechea, Jesus G. Romero, Raman Mathur, Thomas R. Caulfield, Daniel P. Becker, Ravi Durvasula, Prakasha Kempaiah

Chemistry: Faculty Publications and Other Works

Leishmaniasis remains a serious public health problem in many tropical regions of the world. Among neglected tropical diseases, the mortality rate of leishmaniasis is second only to malaria. All currently approved therapeutics have toxic side effects and face rapidly increasing resistance. To identify existing drugs with antileishmanial activity and predict the mechanism of action, we designed a drug-discovery pipeline utilizing both in-silico and in-vitro methods. First, we screened compounds from the Selleckchem Bio-Active Compound Library containing ~1622 FDA-approved drugs and narrowed these down to 96 candidates based on data mining for possible anti-parasitic properties. Next, we completed preliminary in-vitro testing …


Bisindolylmaleimide Ix: A Novel Anti-Sars-Cov2 Agent Targeting Viral Main Protease 3clpro Demonstrated By Virtual Screening Pipeline And In-Vitro Validation Assays, Yash Gupta, Dawid Maciorowski, Samantha E. Zak, Krysten A. Jones, Rahul S. Kathayat, Saara-Anne Azizi, Raman Mathur, Catherine M. Pearce, David J. Ilc, Hamza Husein, Andrew S. Herbert, Ajay Bharti, Brijesh Rathi, Ravi Durvasula, Daniel P. Becker, Bryan C. Dickinson, John M. Dye, Prakasha Kempaiah Nov 2021

Bisindolylmaleimide Ix: A Novel Anti-Sars-Cov2 Agent Targeting Viral Main Protease 3clpro Demonstrated By Virtual Screening Pipeline And In-Vitro Validation Assays, Yash Gupta, Dawid Maciorowski, Samantha E. Zak, Krysten A. Jones, Rahul S. Kathayat, Saara-Anne Azizi, Raman Mathur, Catherine M. Pearce, David J. Ilc, Hamza Husein, Andrew S. Herbert, Ajay Bharti, Brijesh Rathi, Ravi Durvasula, Daniel P. Becker, Bryan C. Dickinson, John M. Dye, Prakasha Kempaiah

Chemistry: Faculty Publications and Other Works

SARS-CoV-2, the virus that causes COVID-19 consists of several enzymes with essential functions within its proteome. Here, we focused on repurposing approved and investigational drugs/compounds. We targeted seven proteins with enzymatic activities known to be essential at different stages of the viral cycle including PLpro, 3CLpro, RdRP, Helicase, ExoN, NendoU, and 2′-O-MT. For virtual screening, energy minimization of a crystal structure of the modeled protein was carried out using the Protein Preparation Wizard (Schrodinger LLC 2020-1). Following active site selection based on data mining and COACH predictions, we performed a high-throughput virtual screen of drugs and investigational molecules (n = …


Type I Topoisomerases As Potential Targets For Therapeutics, Ahmed Seddek Jun 2021

Type I Topoisomerases As Potential Targets For Therapeutics, Ahmed Seddek

FIU Electronic Theses and Dissertations

DNA topoisomerases are universal enzymes that control the topological features of DNA in all forms of life. This study aims to find potential inhibitors of some of the DNA topoisomerases in bacteria and humans that can be developed into potential therapeutics.

The first aim of this study is to find potential inhibitors of bacterial topoisomerase I that can be developed into antibiotics. There is an urgent need to develop novel antibiotics to overcome the world-wide health crisis of antimicrobial resistance. Virtual screening and biochemical assays were combined to screen thousands of compounds for potential inhibitors of bacterial topoisomerase I. NSC76027 …


Profiling Of Fda-Approved And Clinical Trial Drugs Revealed Shared Cytotoxicity And Collateral Sensitivity In Resistant (H69ar) And Non-Resistant (H69) Small Cell Lung Cancer Cells. (Drug Repurposing In Cancer Chemotherapy), Pius Reyderg Agyemang Jan 2021

Profiling Of Fda-Approved And Clinical Trial Drugs Revealed Shared Cytotoxicity And Collateral Sensitivity In Resistant (H69ar) And Non-Resistant (H69) Small Cell Lung Cancer Cells. (Drug Repurposing In Cancer Chemotherapy), Pius Reyderg Agyemang

Electronic Theses and Dissertations

Some cancers are capable of “spitting out” drugs being fed to them, metaphorically speaking, becoming resistant to what were previously effective chemotherapeutics. In small-cell lung cancer (SCLC), an overexpression of a membrane protein (MRP1) and its transport activity can lead to chemotherapy failure. However, this study showed that certain drugs are selectively cytotoxic (exhibit collateral sensitivity) to MRP1-overexpressed SCLC (H69AR) cells. In this study, three drugs (Erlotinib, Pyrimethamine, Fludarabine) were identified to exhibit a dose-dependent collateral sensitivity on H69AR with IC50 values of ~3.5 μM, ~2 μM, and ~20 μM respectively. Halting the transport activity of the MRP1 with 25 …