Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Life Sciences

Bumpy Road Ahead: Overcoming Dna Replication Obstacles One Barrier At A Time, Melanie Anne Sparks Aug 2020

Bumpy Road Ahead: Overcoming Dna Replication Obstacles One Barrier At A Time, Melanie Anne Sparks

Arts & Sciences Electronic Theses and Dissertations

DNA replication must occur efficiently and timely every cell cycle to protect the integrity of the genome. Stalled or slowed replication forks lead to replication stress that can cause replication fork collapse, and potentially genome instability. Scattered throughout the genome are tightly bound proteins, such as transcription factors, that are necessary for cell function and survival. These proteins have the potential to impede timely DNA replication. Furthermore, genomic DNA is packaged around histone octamers into structures called nucleosomes that both compact the DNA and provide an additional layer of information and regulation termed epigenetics. Thus, DNA replication is not only …


Development And Application Of Mass Spectrometry-Based Approaches For Protein Higher Order Structure Analysis And Protein-Protein Interaction Characterization, Mengru Zhang Aug 2020

Development And Application Of Mass Spectrometry-Based Approaches For Protein Higher Order Structure Analysis And Protein-Protein Interaction Characterization, Mengru Zhang

Arts & Sciences Electronic Theses and Dissertations

Proteins, one of the most fundamental biomolecules, adopt unique higher order structures (HOS) to enable diverse biological functions. Deciphering protein HOS is crucial to gain deeper insights of their working mechanisms and to develop biotherapeutics. Mass spectrometry (MS)-based approaches evolved rapidly in the past 30 years and are now playing critical roles in protein HOS characterization. One of those approaches is MS-based footprinting whose principle is to map the solvent accessible surface area (SASA) to deliver structural information. Protein footprinting can be achieved by reversible labeling, e.g., hydrogen-deuterium exchange (HDX), and by irreversible labeling using radical-based reagents or other targeted …


Modeling Her2 Mutations In Colorectal Cancer Using A Her2 Transgenic Mouse Model And Gastrointestinal Organoids, Elisa Murray Aug 2020

Modeling Her2 Mutations In Colorectal Cancer Using A Her2 Transgenic Mouse Model And Gastrointestinal Organoids, Elisa Murray

Arts & Sciences Electronic Theses and Dissertations

Amplification or mutations in members of the epidermal growth factor receptor family, such as HER2, have been identified in several human diseases. In particular, mutations in the intracellular kinase domain have been identified in breast, colon, and lung cancers. The Cancer Genome Atlas has identified HER2 mutations or gene amplification in seven percent of colon cancer patients. These mutations are well known to promote enhanced cell growth and transformation of colon cancer cell lines. Previous studies have found HER2 mutations to confer anchorage independent growth and activation of downstream signaling pathways such as MAPK. Although HER2 mutations have been extensively …


A Mechanistic And Genomic Analysis Of Molluscum Contagiosum Virus Immune Evasion, Ian Benjamin Harvey Aug 2020

A Mechanistic And Genomic Analysis Of Molluscum Contagiosum Virus Immune Evasion, Ian Benjamin Harvey

Arts & Sciences Electronic Theses and Dissertations

Molluscum contagiosum virus (MCV) is a common human-specific poxvirus with a proclivity for

infecting children and the immune-compromised. A characteristic MCV infection is restricted to

the epidermal layers of the skin and can persist for weeks to years in an otherwise healthy

individual. The high clinical burden of MCV is at odds with our limited knowledge regarding how

it successfully evades the human immune response, which is in part due to the lack of an animal

model or cell line to propagate the virus. Through this dissertation, we have uncovered and

characterized a novel mechanism by which MC80, a protein …


Post-Lysosomal Cholesterol Trafficking: Novel Tools And Insights, Mckenna Rae Feltes May 2020

Post-Lysosomal Cholesterol Trafficking: Novel Tools And Insights, Mckenna Rae Feltes

Arts & Sciences Electronic Theses and Dissertations

Cholesterol is an essential mammalian lipid. It is a major component of cellular membranes, a precursor molecule for the synthesis of hormones and bile acids, and a regulator of protein function. Although cholesterol is synthesized, de novo, in the endoplasmic reticulum, cells principally meet cholesterol requirements through uptake of lipoprotein particles. Lipoprotein-derived cholesterol is transported to the lysosome where it is transferred from the soluble lysosomal protein, NPC2, to limiting-lysosomal membrane protein NPC1. Cholesterol is then re-distributed to other cellular membranes in order to fulfill organellar cholesterol requirements; however, the cellular machineries involved in coordinating this distribution are poorly characterized. …


The Enzymatic Function Of The Tir Domain: From Axon Degeneration To Innate Immunity, Kow Essuman May 2020

The Enzymatic Function Of The Tir Domain: From Axon Degeneration To Innate Immunity, Kow Essuman

Arts & Sciences Electronic Theses and Dissertations

The Toll/Interleukin-1 Receptor (TIR) domain is an evolutionarily ancient protein domain conserved from bacteria to eukaryotes, and is an essential signaling component of innate immunity pathways. In animal innate immunity, TIR domains have primarily been described for their scaffolding function in assembling protein complexes in host defense. In plant immunity, TIR domains are key components of the intracellular Nucleotide Binding Leucine rich repeat (NLR) immune receptors that confer resistance to pathogens. These NLR receptors trigger cell death and an immune response upon activation, but their mechanism has remained elusive. In bacteria, TIR domain proteins have been suggested to function as …


Structural Mechanism Of Poxvirus Sabotage Of T-Cell Costimulation, Jabari Issa Elliott May 2020

Structural Mechanism Of Poxvirus Sabotage Of T-Cell Costimulation, Jabari Issa Elliott

Arts & Sciences Electronic Theses and Dissertations

Poxviruses are characterized by large double stranded DNA genomes that encode numerous proteins tailored for host immune response evasion. Our lab has been investigating a sequence-diverse family of secreted poxvirus proteins that appear to share a conserved beta-sandwich fold, but differ in their immunomodulatory functions. We have termed members of this superfamily Poxvirus Immune Evasion (PIE) proteins, and there appears to be at least 20 distinct subfamilies. As it turns out, cowpox virus (CPXV) encodes 10 PIE proteins, one of which, M2, can inhibit murine T cell activation through specific interactions with co-stimulatory ligands B7. 1 (CD80) and B7. 2 …


Molecular Insights Into Microbial Adhesion, Roger Davies Klein May 2020

Molecular Insights Into Microbial Adhesion, Roger Davies Klein

Arts & Sciences Electronic Theses and Dissertations

Antibiotic-resistant bacterial infections are a serious and immediate threat to global public health. In the United States alone, over 2 million individuals develop antibiotic-resistant infections annually, resulting in 23,000 deaths and $20 billion in excess health care costs. Virulence factors that allow bacteria to invade and persist within the host are promising targets for novel antimicrobial agents that could be used to curb the spread of antibiotic resistance. Development of therapeutics that can selectively eliminate pathogenic bacteria while sparing the beneficial host microbiota requires a detailed molecular understanding of critical virulence factors that facilitate interactions between pathogens and their environments. …