Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 18 of 18

Full-Text Articles in Life Sciences

Mitochondrial Roles In Developmentally Programmed Heart Disease, Eli John Louwagie May 2023

Mitochondrial Roles In Developmentally Programmed Heart Disease, Eli John Louwagie

Dissertations and Theses

Offspring of diabetic and obese mothers (ODOM) have greater risks of heart disease at birth and later in life. However, prevention is hindered because underlying mechanisms are poorly understood. Mounting studies in the Developmental Origins of Health and Disease field suggest that mitochondria play key roles in developmentally programmed heart disease similar to the roles they play in cardiomyopathy in adults with diabetes and obesity. However, whether mitochondria are responsible for the short[1]and long-term cardiac disease seen in ODOM remains unknown. Here, we sought to delineate the roles of mitochondria in the hearts of ODOM, determine whether mitochondria are playing …


Aerosolization Of Catalytic Rna For Prebiotic Transport And In Situ Reactivity, Brennan Roland Farrell Mar 2022

Aerosolization Of Catalytic Rna For Prebiotic Transport And In Situ Reactivity, Brennan Roland Farrell

Dissertations and Theses

Recent theoretical and experimental work suggests that aqueous aerosols in the early Earth's atmosphere might have been an essential component to the development of life. These complex droplets would have served to compartmentalize emerging biomolecules, thereby concentrating them, increasing reactivity, and facilitating transport and exchange between ocean and atmosphere. This project tests an underexplored but potentially important environmental paradigm for the RNA world hypothesis of prebiotic evolution, probing the effects of aerosolization on catalytic RNA using a model ribozyme. Here we demonstrate the successful transport and in situ self-assembly of the Azoarcus ribozyme from multiple independent fragments via a laboratory-constructed …


Nonhematopoietic Erythropoietin: A Study Of Signaling, Structure, And Behavior, Nicholas John Pekas Jan 2022

Nonhematopoietic Erythropoietin: A Study Of Signaling, Structure, And Behavior, Nicholas John Pekas

Dissertations and Theses

Erythropoietin (EPO) is a cytokine hormone known for initiating red blood cell proliferation by binding to its homodimer receptor (EPOR)2 in the bone marrow. Recent progress in neurobiology has shown that EPO also exerts robust neurotrophic and neuroprotective activity in the CNS. It is widely thought that EPO’s neurotrophic activity is centrally involved in its antidepressant and cognitive enhancing effects. However, EPO’s potent erythropoietic effects prevent it from being used in the clinic to treat psychiatric disorders. A chemically engineered non-erythropoietic derivative of EPO, carbamoylated EPO (CEPO), produces psychoactive effects without activating hematopoiesis. However, CEPO is expensive to produce and …


A Bioinformatic And Biochemical Analysis Of Cruciviruses, George William Kasun Oct 2021

A Bioinformatic And Biochemical Analysis Of Cruciviruses, George William Kasun

Dissertations and Theses

Cruciviruses are novel ssDNA viruses discovered through metagenomics and direct environmental DNA amplification and cloning. The genomes of cruciviruses suggest that gene transfer between RNA and DNA viruses occurred due to the presence of putative protein-encoding genes that are homologous to both ssRNA and ssDNA viruses. In order to gain a better understanding of this group of viruses both bioinformatic analyses and in vitro biochemical experiments were employed. The results of the bioinformatic analyses show that cruciviruses are a highly diverse group of ssDNA viruses. Their placement within established ssDNA phylogenies is difficult due to heterogeneity in their putative replication-associated …


Mechanisms Of Connexin-46 And -50 Intercellular Channel Function And Stability By Molecular Dynamics Simulations, Bassam George Haddad Aug 2021

Mechanisms Of Connexin-46 And -50 Intercellular Channel Function And Stability By Molecular Dynamics Simulations, Bassam George Haddad

Dissertations and Theses

Gap junctions make up a class of intercellular channels that characteristically connect the cytoplasm of directly apposed cells through large assemblies, or plaques, constituted by a multitude of intercellular channels. Gap junction mediated intercellular communication is critical for a variety of physiological functions, from coordinating electrical impulses in the heart and brain to maintaining homeostasis in most tissues. There are 21 isoforms of connexins, the constituent subunit of the gap junction, expressed in a tissue dependent manner. Gap junctions formed from different isoforms exhibit distinct biophysical properties, such as gating kinetics and sensitivity, as well as unique permeability and selectivity …


Steady-State Transmembrane Water Exchange In Proliferating Cultures Of Saccharomyces Cerevisiae, Joseph O'Malley Armstrong May 2021

Steady-State Transmembrane Water Exchange In Proliferating Cultures Of Saccharomyces Cerevisiae, Joseph O'Malley Armstrong

Dissertations and Theses

Cellular water exchange is often considered in terms of a change in volume, where a net flux of water moves across the cell membrane due to a change in osmotic pressure. Osmotic pressure can cause a cell to shrink or swell, however, rapid water exchange persists across the membrane even when the volume of the cell is constant. Steady-state transmembrane water exchange describes the exchange of water across the cell membranes which results in no net change in cell volume. This exchange is astonishingly rapid; the entire pool of intracellular water of a Saccharomyces cerevisiae cell may exchange 2-5 times …


Development Of Light Actuated Chemical Delivery Platform On A 2-D Array Of Micropore Structure, Hojjat Rostami Azmand, Hojjat Rostami Azmand Jan 2021

Development Of Light Actuated Chemical Delivery Platform On A 2-D Array Of Micropore Structure, Hojjat Rostami Azmand, Hojjat Rostami Azmand

Dissertations and Theses

Localized chemical delivery plays an essential role in the fundamental information transfers within biological systems. Thus, the ability to mimic the natural chemical signal modulation would provide significant contributions to understand the functional signaling pathway of biological cells and develop new prosthetic devices for neurological disorders. In this paper, we demonstrate a light-controlled hydrogel platform that can be used for localized chemical delivery in a high spatial resolution. By utilizing the photothermal behavior of graphene-hydrogel composites confined within micron-sized fluidic channels, patterned light illumination creates the parallel and independent actuation of chemical release in a group of fluidic ports. The …


Application Of Single Particle Electron Microscopy To Native Lens Gap Junctions And Intrinsically Disordered Signaling Complexes, Janette Bernadette Myers Jun 2019

Application Of Single Particle Electron Microscopy To Native Lens Gap Junctions And Intrinsically Disordered Signaling Complexes, Janette Bernadette Myers

Dissertations and Theses

Gap junctions are a class of membrane proteins that facilitate cell-to-cell communication by forming channels that directly couple the cytoplasm of neighboring cells. The channels are composed of monomers called connexins. Humans express 21 connexin isoforms in a cell-type specific fashion, and each isoform has distinct mechanisms of permeation and regulation. Co-assembly of multiple isoforms into a single intercellular channel can change channel properties, such as conductance and selectivity to substrates (e.g., ions, metabolites and signaling molecules). However, the mechanistic basis for this functional diversity has remained poorly understood. This lack of mechanistic insight has been due in large part …


The Effect Of Dynamic Kinetic Selection On An Evolving Ribozyme Population, Patrick David Poletti Jan 2019

The Effect Of Dynamic Kinetic Selection On An Evolving Ribozyme Population, Patrick David Poletti

Dissertations and Theses

Dynamic Kinetic Selection (DKS) suggests that kinetic, rather than thermodynamic, stability will dictate the composition of a replicating population of biomolecules. Here, the results obtained from a series of five related reactions involving gradually increasing percentages of randomly-mutated substrate fragments to generate variants of full-length Azoarcus group I intron through an autocatalytic self-assembly reaction involving a series of recombination events, showed DKS as a driving factor in dictating the population composition of full-length product assembled from substrates that had fewer positions available to randomization.

In trying to elucidate a plausible scheme for the origins of complex biomolecules on the prebiotic …


Enzymatically Active Microspheres For Self-Propelled Colloidal Engines, Jungeun Park Jan 2017

Enzymatically Active Microspheres For Self-Propelled Colloidal Engines, Jungeun Park

Dissertations and Theses

Micro- and nano-motors have attracted numerous attentions from various scientific areas due to their potential applications. Most studies on self-propelled colloidal engines have exploited catalytic decomposition of hydrogen peroxide to drive the motor. Since the hydrogen peroxide is caustic, it is not suitable to use in biological applications, encouraging people to develop “greener” fuels. The aim of this research is to study a new transduction mechanism for self-propulsion not tied to hydrogen peroxide, and which can in particular be used with biological molecules as fuels. In this study, we focus on making particles with enzymatic activity which can effectively decompose …


The Foundations Of Network Dynamics In An Rna Recombinase System, Jessica Anne Mellor Yeates May 2016

The Foundations Of Network Dynamics In An Rna Recombinase System, Jessica Anne Mellor Yeates

Dissertations and Theses

How life originated from physical and chemical processes is one of the great questions still unanswered today. Studies towards this effort have transitioned from the notion of a single self-replicating entity to the idea that a network of interacting molecules made this initial biological leap. In order to understand the chemical kinetic and thermodynamic mechanisms that could engender pre-life type networks we present an empirical characterization of a network of RNA recombinase molecules. We begin with 1-, 2-, and 3-molecular ensembles and provide a game theoretic analysis to describe the frequency dependent dynamics of competing and cooperating RNA genotypes. This …


Synthesis Of 4-Azidocoumarins And Their Use In Copper-Catalyzed Azide-Alkyne Cycloaddition Reactions, Anthony J. Netsuri Jan 2013

Synthesis Of 4-Azidocoumarins And Their Use In Copper-Catalyzed Azide-Alkyne Cycloaddition Reactions, Anthony J. Netsuri

Dissertations and Theses

Triazole-containing compounds have shown great biological activity ranging from antiviral, antibacterial, to anticancer, to name a few. Coumarin derivatives have also shown interesting biological activities. The combination of these bioactive compounds appears to have great promise for new and future medicines. In this work, various 4-azido-coumarins were synthesized via the transformation of the 4-hydroxy derivatives to 4-benzotriazolyloxy coumarins by reaction with the peptide coupling agent (benzotriazol-1-yloxy)tris-(dimethylamino)phosphonium hexafluorophosphate (BOP), and 1,8-diazabicycloundec-7-ene (DBU) as the base, in tetrahydrofuran (THF) solvent. The 4-benzotriazolyloxy coumarins were converted to the 4-azidocoumarins by reaction with sodium azide (NaN3), and the overall process was simplified to a …


Spontaneous Cooperative Assembly Of Replicative Catalytic Rna Systems, Nilesh Vaidya Jan 2012

Spontaneous Cooperative Assembly Of Replicative Catalytic Rna Systems, Nilesh Vaidya

Dissertations and Theses

The RNA World hypothesis proposes a period of time during the origins of life in which RNA molecules were the only source of both genotypes and phenotypes. Although a vast amount of evidence has been obtained in support of this hypothesis, a few critical demonstrations are lacking. A most crucial one is a demonstration of self-replication of RNA molecule from prebiotic soup. Previously in the Lehman laboratory, it has been demonstrated that a 198-nucleotide molecule derived from the Azoarcus group I intron can self-assemble from up to four fragments of RNA via recombination. Furthermore, the covalent full-length molecules are catalytically …


The Physiology And Biochemistry Of Isolated Skeletal Muscle Mitochondria : A Comparative Study, Mark Lowell Wagner Jan 1989

The Physiology And Biochemistry Of Isolated Skeletal Muscle Mitochondria : A Comparative Study, Mark Lowell Wagner

Dissertations and Theses

The physiological limit to maximum aerobic capacity (VO2max) in vertebrates has been attributed to cardiovascular oxygen delivery, to the ability of the muscle cells to consume oxygen, or to a fine-tuned development of all components of the respiratory system such that no single component can be shown to limit VO2max. The above hypotheses have each been developed using different experiments with different animals. The comparative studies uniting these animals and methods are limited. In order to further our knowledge of the cellular limit to VO2max, skeletal muscle mitochondria were isolated from species representing four …


Ascorbic Acid, Lipid Peroxidation, And Aging, Brian Evan Leibovitz May 1979

Ascorbic Acid, Lipid Peroxidation, And Aging, Brian Evan Leibovitz

Dissertations and Theses

The role of ascorbic acid with regard to lipid peroxidation and aging has been examined. A thorough literature analysis indicates that free radical-induced lipid peroxidation is a plausible biochemical explanation for aging. Lipid peroxidation causes cellular damage due to altered enzyme activities, error-prone nucleic acid metabolism, and membrane dysfunction, as well as the accumulation of aging pigments in the lysomes. Ascorbic acid, a water soluble free radical quencher, was examined with regard to carbon tetra-chloride-induced lipid peroxidation and in vivo aging. Carbon tetrachloride, a well-known free radical inducer, caused marked increases in the ration of oxidized/reduced vitamin C only …


The Role Of Zinc In Dihydroorotase, Pamela S. Gilchrist Aug 1975

The Role Of Zinc In Dihydroorotase, Pamela S. Gilchrist

Dissertations and Theses

Dihydroorotase (4,4—dihydroorotic acid amidolyase, EC 3.5.2.3.) which catalyzes the reversible cyclization of N-carbamyl-L-aspartate to L-dihydroorotate has been purified from orotate-grown Clostridium oroticum. The enzyme is stable in 0.3 M sodium chloride and 10 µ ZnSO4. Sodium dodecyl sulfate gel electrophoresis indicates the enzyme to be composed of two identical subunits each with a molecular weight of 58,000 + 6000. Dihydroorotase is shown to be a zinc-containing metalloenzyme with 2 g atoms of zinc per 58,000 g of protein. The role of zinc in dihydroorotase is discussed.


A Study Of Rna Bacteriophage 7s Infection Of Pseudomonas Aeruginosa, Deanne Benson Aug 1974

A Study Of Rna Bacteriophage 7s Infection Of Pseudomonas Aeruginosa, Deanne Benson

Dissertations and Theses

A study was conducted to find the effect of magnesium, calcium, manganese and zinc ions on the infection of Psudomonas aeruginosa strain 1C by RNA bacteriophage 7s. When an 18 hour progeny experiment was performed, it was found that magnesium, calcium and manganese had different effects on bacteriophage production and was dependent on the bacterial growth conditions. RNA bacteriophage 7s progeny production was significantly enhanced by the addition of magnesium to cultures of Psudomonas aeruginosa 1C grown in a magnesium deficient medium. Under these environmental conditions there was a slight increase in progeny in the presence of calcium. When Psudomonas …


Enzyme Reactions Using Ureidosuccinate As A Substrate During Pyrimidine Biosynthesis And Degradation In Cl. Oroticum, Penny Amy Aug 1974

Enzyme Reactions Using Ureidosuccinate As A Substrate During Pyrimidine Biosynthesis And Degradation In Cl. Oroticum, Penny Amy

Dissertations and Theses

Cells of Clostridium oroticum, an anaerobic bacterium, were grown on orotate as a carbon and energy source. Ureidosuccinase, an inducible enzyme in the pathway for pyrimidine degradation has been shown to convert ureidosuccinate to aspartate, CO2 and NH3 as reported by Liebenmm and Kornberg (7). Aspartate and CO2 were formed in approximately a 1:1 ratio from ureidosuccinase activity.

Ureidosuccinase was found to be a Mn+2 requiring enzyme with a pH optimum of approximately pH 6.5. Enzyme activity is labile to O2, temperature, pH, dilution and high ionic strength. The optimum conditions for storage …