Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 74

Full-Text Articles in Life Sciences

Novel Photobase Generators For Photoinduced Polymerization And Ph Regulation, Shupei Yu Dec 2023

Novel Photobase Generators For Photoinduced Polymerization And Ph Regulation, Shupei Yu

Dissertations

Photochemistry encompasses the investigation of chemical processes instigated by light absorption. As important branches of photochemistry, photosensitive and optical materials have attracted extensive research interests in both academia and industry. Photosensitive and optical materials are composed of polymers / small molecules with photo-responsive properties. These materials not only can absorb light in the desired energy spectrum, but also exhibit chemical / physical reactions, which can be applied to different fields such as photoredox, photo-heat, phototherapy, solar cells, diodes, etc. Among them, photobase generators (PBGs) are a series of photosensitive compounds, which absorb the incident light, then release the basic species …


Biophysical Factors Affecting Habitat Suitability For Crassostrea Virginica, Jason D. Tilley Dec 2023

Biophysical Factors Affecting Habitat Suitability For Crassostrea Virginica, Jason D. Tilley

Dissertations

Oyster reefs provide a variety of important ecosystem services. However, the mortality rate of eastern oyster, Crassostrea virginica, the dominant species that produces oyster reefs in the northern Gulf of Mexico, is increasing at an alarming rate due to a variety of abiotic and biological factors. I examined how biophysical factors, including the less-studied fatty acid profiles of the suspended particulate matter on which oysters feed, influenced morphometric condition of C. virginica.

I sampled suspended particulate matter (SPM) and oysters in-situ in the western Mississippi Sound, which historically supported the majority of oyster production in Mississippi waters. Sampling …


Binding Interactions Of Biologically Relevant Molecules Studied Using Surface-Modified And Nanostructured Surfaces, Palak Sondhi Nov 2023

Binding Interactions Of Biologically Relevant Molecules Studied Using Surface-Modified And Nanostructured Surfaces, Palak Sondhi

Dissertations

This research focuses on the field of surface nanobioscience, wherein different nanosurfaces that will be used as working electrodes in the electrochemical cell are manufactured and surface modified to understand the critical binding interactions between biologically significant molecules like proteins, carbohydrates, small drug molecules, and glycoproteins. This research is essential if we are to determine whether a synthetic molecule can serve as a therapeutic candidate or diagnose a disease in its early stages. In order to fully understand the binding interactions, the study begins with defining some of the fundamental concepts, principles, and analytical tools for biosensing.

Afterwards, we addressed …


Probing Amyloid-Beta Protein Structure And Dynamics With A Selective Antibody, Shikha Grover Feb 2023

Probing Amyloid-Beta Protein Structure And Dynamics With A Selective Antibody, Shikha Grover

Dissertations

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder. The AD brain is characterized by significant neuronal loss and accumulation of insoluble fibrillar amyloid-β protein (Aβ) plaques and tau protein neurofibrillary tangles in the brain. However, over the last decade, many studies have shown that the neurodegenerative effect of Aβ may in fact be caused by various soluble oligomeric forms as opposed to the insoluble fibrils. Furthermore, the data suggest that a pre-fibrillar aggregated form, termed protofibrils, mediates direct neurotoxicity, and triggers a robust neuroinflammatory response.

Antibodies targeting the various conformation of Aβ are important therapeutic agents to prevent the progression …


Interactions Of Amyloid Peptides With Lipid Membranes, Yanxing Yang Dec 2022

Interactions Of Amyloid Peptides With Lipid Membranes, Yanxing Yang

Dissertations

The aggregation of amyloid proteins into fibrils is a hallmark of several diseases including Alzheimer’s (AD), Parkinson’s, and Type II diabetes. This aggregation process involves the formation of small size oligomers preceding the formation of insoluble fibrils. Recent studies have shown that these oligomers are more likely to be responsible for cell toxicity than fibrils. A possible mechanism of toxicity involves the interaction of oligomers with the cell membrane compromising its integrity. In particular, oligomers may form pore-like structures in the cell membrane affecting its permeability or they may induce lipid loss via a detergent-like effect. This dissertation aims to …


Angiogenic Supports For Microvascular Engineering, Zain Siddiqui Dec 2022

Angiogenic Supports For Microvascular Engineering, Zain Siddiqui

Dissertations

Ischemic tissue disease is caused by a lack of circulation / blood supply to tissue. This can be treated by introducing a number of angiogenic (pro-blood vessel forming) factors into the tissue. This work presents strategies for ischemic tissue treatment utilizing a novel proangiogenic self-assembling peptide hydrogel platform. To demonstrate the utility of this platform, its use alone as an angiogenic therapeutic (both alone as a self-assembling hydrogel and with two-component systems), and its ability to vascularize implants is explored. Due to these angiogenic scaffolds demonstrating efficacy to regenerate microvasculature, this work evaluates diseases that can be treated by the …


Ferrocenium Salt Aided Substitution Reactions And Synthesis Of Glycosylated Curcumin Derivatives, Deva Saroja Talasila Nov 2022

Ferrocenium Salt Aided Substitution Reactions And Synthesis Of Glycosylated Curcumin Derivatives, Deva Saroja Talasila

Dissertations

Organic synthesis has been significantly advanced with the employment of transition metal complexes. The discovery of transition metal catalysts provided the synthetic community with powerful tools for accelerating reactions and making them more selective and efficient. Many chemical reactions do not happen without a catalyst.

Iron-based catalysts have several advantages for the chemical industry because it is a non-toxic and ecologically friendly metal. Our group previously found that ferrocenium cations with a 3+ oxidation state of iron-catalyzed propargylic substitution reactions at low temperatures. The sandwich structure of ferrocenes allows substituents to be introduced on the cyclopentadienyl rings, which allows for …


Structural And Transient Kinetic Analysis On Mechanism-Based Inactivators Of Human Ornithine Aminotransferase, Arseniy Butrin Oct 2022

Structural And Transient Kinetic Analysis On Mechanism-Based Inactivators Of Human Ornithine Aminotransferase, Arseniy Butrin

Dissertations

HCC, Hepatocellular carcinoma, MBI, Mechanism-based inactivator, OAT, Ornithine Aminotransferase


Immune Cell-Protein Interactions In Alzheimer’S Disease, Kapur Dhami Jul 2022

Immune Cell-Protein Interactions In Alzheimer’S Disease, Kapur Dhami

Dissertations

Misfolded protein aggregates are one of the significant contributing factors in many neurogenerative diseases including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and others. My PhD research project was to study various aspects of amyloid-β peptide, a 40-42-residue peptide and the primary component of the senile plaques found in Alzheimer’s disease (AD) brains. One objective of my research was to purify and characterize the intermediate Aβ42 species using an array of biophysical techniques like size exclusion chromatography, fluorescence assays, circular dichroism, cellular assays, and protein assays. The other major research thrust of my project was to study the role of microglial …


Mechanism Of Sila- And Germafluorenes For Biological Applications, Shelby Jarrett Jun 2022

Mechanism Of Sila- And Germafluorenes For Biological Applications, Shelby Jarrett

Dissertations

2,7-disubstituted silafluorenes and germafluorenes, originally designed for OLED applications, are a class of fluorescent dyes that have gained recent interest as probes for bioimaging and as biosensors to monitor cellular dynamics and interactions. Desirable biological probes absorb in the visible region, have high extinction coefficients, high quantum yield and excellent photostability. Here, their spectral properties are investigated under aqueous conditions for relevant biological applications. These molecules display intense blue fluorescence in the solid state and in solution, have high extinction coefficients, and exhibit appreciable solubility in aqueous solution. To better understand potential applications, the mechanism of fluorescence was investigated. It …


Investigating The Role Of Fun30, A Chromatin Remodeler, In Dna Repair, Mehwish Iqbal Apr 2022

Investigating The Role Of Fun30, A Chromatin Remodeler, In Dna Repair, Mehwish Iqbal

Dissertations

The repair of DNA double-strand breaks (DSBs) is crucial for maintaining genome stability. DSB repair needs to take place within the complex organization of the chromatin, and this requires changes in the chromatin structure adjacent to DSB sites. These changes occur through covalent histone modifications that alter histone-DNA contacts as well as by the action of ATP-dependent chromatin remodelers. Many chromatin remodelers, including Fun30, are involved in DSB repair. Fun30 facilitates DNA end resection at DSB site during the homologous recombination repair pathway. Apart from its role in DNA repair, Fun30 promotes gene silencing at heterochromatic loci such as telomeres, …


Abl2 Promotes Alcohol-Associated Liver Disease Via Ppar Gamma Regulation, Gregory Malnassy Jan 2022

Abl2 Promotes Alcohol-Associated Liver Disease Via Ppar Gamma Regulation, Gregory Malnassy

Dissertations

Alcohol-associated liver disease (AALD) is an umbrella term for a spectrum of diseases resulting from chronic alcohol (e.g. ethanol) abuse ranging in severity from reversible conditions such as alcohol-induced steatosis to advanced and largely irreversible liver pathologies including alcoholic steatohepatitis (ASH), alcoholic hepatitis (AH), fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). AALD is one of the primary causes of chronic liver disease worldwide and accounts for 44% of liver disease deaths in the United States. Drinking rates, both in the United States and globally, have increased year over year for the past three decades, a trend which has resulted in significantly …


Granulins In Norm And Neurodegenerative Pathologies, Anukool Bhopatkar Dec 2021

Granulins In Norm And Neurodegenerative Pathologies, Anukool Bhopatkar

Dissertations

Granulins (GRNs) are small, cysteine-rich modules produced from the proteolytic cleavage of the precursor protein called progranulin (PGRN). GRNs are present in the form of seven tandem repeats within the precursor and are known to be produced in the extracellular and in lysosomal environments. In physiology, PGRN and GRNs plays pleiotropic roles such as neuronal growth and differentiation, immunomodulation, wound healing. Recent studies have implicated pathological role for PGRN in Alzheimer disease (AD) and frontotemporal dementia (FTD) but specific mechanism(s) remains unclear. However, potential interactions between GRNs and Ab42 and TDP-43 seem like a plausible underlying mechanism. Studies presented here …


Complexation Of Glycoalkaloid Α- Tomatine With Sterols And Its Potential Application As An Anti-Cancer Drug, Bishal Nepal Jul 2021

Complexation Of Glycoalkaloid Α- Tomatine With Sterols And Its Potential Application As An Anti-Cancer Drug, Bishal Nepal

Dissertations

Glycoalkaloids (GAs) are secondary metabolites found mostly in higher plant species and some marine invertebrates. They are known to form complexes with 3β-hydroxy sterols such as cholesterol causing membrane disruption. So far the visual evidence showcasing the complexes formed between glycoalkaloids and sterols has been mainly restricted to some earlier studies using Brewster angle microscopy. This study aimed to develop a method for topographic and morphological analysis of sterol-glycoalkaloid complexes. Langmuir-Blodgett (LB) transfer of monolayers comprising of glycoalkaloid tomatine, sterols, and lipids in varying molar ratios onto mica followed by AFM examination was performed. The AFM method used required minimal …


The Role Of Nutrient Sensitive Protein O-Glcnacylation In Developmental Cortical Neurogenesis, Shama Parween Jun 2021

The Role Of Nutrient Sensitive Protein O-Glcnacylation In Developmental Cortical Neurogenesis, Shama Parween

Dissertations

The nutrient responsive O-GlcNAcylation is a dynamic, posttranslational protein modification present on many nucleocytoplasmic and mitochondrial proteins. Previous research has indicated that hyperglycaemia increases the levels of total O-GlcNAcylation within cells. Transcription factors and histones are among hundreds of proteins that have been reported to be O-GlcNAcylated and have importance in cell fate determination during cell growth, proliferation, and differentiation. However, the role of protein O-GlcNAcylation in epigenome control in response to nutritional perturbations is poorly understood. Hyperglycaemia induced protein O-GlcNAcylation have been linked to several pathologies, including obesity, diabetes, cancer, cardiovascular and neurodegenerative diseases. …


Reconstituting The Cyanobacterial Circadian Clock In Vitro, Pyong Hwa Kim May 2021

Reconstituting The Cyanobacterial Circadian Clock In Vitro, Pyong Hwa Kim

Dissertations

Cyanobacteria are photosynthetic organisms that are known to be responsible for oxygenating Earth’s early atmosphere. Having evolved to ensure optimal survival in the periodic light/dark cycle on this planet, their genetic codes are packed with various tools, including a sophisticated biological timekeeping system. Among the cyanobacteria is Synechococcus elongatus PCC 7942, the simplest clock-harboring organism with a powerful genetic tool that enabled the identification of its intricate timekeeping mechanism. The three central oscillator proteins—KaiA, KaiB, and KaiC—drive the 24 h cyclic gene expression rhythm of cyanobacteria, and the "ticking" of the oscillator can be reconstituted inside a test tube just …


Molecular Mechanism Of Cyanobacteria Circadian Clock Oscillator And Effect Of Co Factors On Its Oscillation, Manpreet Kaur Dec 2020

Molecular Mechanism Of Cyanobacteria Circadian Clock Oscillator And Effect Of Co Factors On Its Oscillation, Manpreet Kaur

Dissertations

The circadian rhythms arise as an adaptation to the environmental 24-hour day and night cycle due to Earth's rotation. These rhythms prepare organisms to align their internal biological activities and day to day behavior or events with the environmental change of the 24-hour day and night cycle. Circadian rhythms are found widely in all living kingdoms of life on Earth. Cyanobacteria are photosynthetic prokaryotes which first used to study these circadian rhythms. Among cyanobacterial species, Synechococcus elongatus PCC 7942 (henceforth, S. Elongatus) is the simplest organism with a durable and sturdy circadian clock and is study as a model organism. …


Interactions Of The Nlrp3 Inflammasome Complex, Nyasha Makoni Nov 2020

Interactions Of The Nlrp3 Inflammasome Complex, Nyasha Makoni

Dissertations

The innate immune system is the first line of defense in response to invasion by pathogens. One of the major pathways in the innate immune system involves a three-protein complex known as the NLRP3 inflammasome. This complex comprises of NLRP3, ASC, and procaspase-1. In response to stimuli, the inflammasome assembles to activate caspase-1 which subsequently facilitates production of interleukin-1β (IL-1β), an inflammatory cytokine. The NLRP3 inflammasome has been implicated in a variety of inflammatory disorders including Alzheimer’s disease (AD). Amyloid beta (Aβ) is the protein that causes AD and Aβ deposits in the brain activate microglia resulting in chronic inflammation. …


Microglia Induced Neuroinflammation Through The Nlrp3 Inflammasome Following Blast Traumatic Brain Injury, Daniel Younger Aug 2020

Microglia Induced Neuroinflammation Through The Nlrp3 Inflammasome Following Blast Traumatic Brain Injury, Daniel Younger

Dissertations

The incidence of traumatic brain injury (TBI) among military personnel have been steadily increasing with modern conflicts. A recent RAND report estimated 320,000 service members, totaling 20% of deployed forces, suffer from TBI. However, of this population roughly 60% have not seen a medical professional specifically for TBI. Unlike the civilian population, the primary cause of TBI for active-duty military personnel is blast exposure. Blasts now account for over 70% of all US military casualties in operation Iraqi Freedom (OIF) and Operation enduring freedom (OEF) and are the major cause of TBI. Among many pathological mechanisms associated with blast TBI, …


Chemoenzymatic Study Of Coa-Linked Rna In Bacteria, Krishna Sapkota May 2020

Chemoenzymatic Study Of Coa-Linked Rna In Bacteria, Krishna Sapkota

Dissertations

The ability of RNA to store genetic information and to catalyze biochemical transformations led to the speculation of the existence of RNA world before the evolution of contemporary ribonucleoprotein (RNP) world. Recent discovery of RNA molecules containing metabolic cofactors including coenzyme A and its various thioesters at their 5’ end further supported the RNA world hypothesis as these CoA-linked RNA molecules could be the molecular fossils with very ancient origin. As both RNA and Coenzyme A are believed to have co-existed since last universal common ancestor (LUCA) or even before, the CoA-RNA conjugates in current biology may reveal fundamental molecular …


Selectivity For Allosteric Effectors Of Bacterial Adp-Glucose Pyrophosphorylase: Structural And Functional Studies, Mashael Alghamdi Jan 2020

Selectivity For Allosteric Effectors Of Bacterial Adp-Glucose Pyrophosphorylase: Structural And Functional Studies, Mashael Alghamdi

Dissertations

The biosynthesis of the intracellular polysaccharide in bacteria and plants, glycogen and starch, respectively, controlled by the key regulatory step that catalyzed by ADP-Glucose Pyrophosphorylase (ADP-Glc PPase). ADP-Glc PPase is an allosteric enzyme regulated by metabolites produced of the principle carbon assimilation pathway in each organism. Agrobacterium tumefaciens enzyme activated by fructose 6-phosphate (Fru6P) and pyruvate, whereas Escherichia coli enzyme activated by fructose 1,6-bisphosphate (FBP), and both enzymes inhibited by AMP. Here, we targeted the allosteric regulation of the A. tumefaciens enzyme, examined some residues that may impact the regulation mechanism (Ser72, His71, Arg75, Ser351, Ser334, Arg368, Asn350, and Asp291), …


Human Isocitrate Dehydrogenase Enzymes, Joseph Valentein Roman Jan 2020

Human Isocitrate Dehydrogenase Enzymes, Joseph Valentein Roman

Dissertations

Mammals have three forms of isocitrate dehydrogenase (ICDH) that each catalyze the oxidative decarboxylation of isocitrate forming alpha-ketoglutarate (AKG), carbon dioxide and reduced pyridine nucleotide. The intra-mitochondrial, citric acid cycle enzyme is ICDH III that exists as a hetero tetramer and uses NAD+ as a substrate. ICDH I and ICDH II are both dimeric enzymes that reside in the cytosol and use NADP+. While, the precise function of the cytosolic ICDHs is not known, active site variants of both ICDH I and II cause a variety of cancers. The R132H variant of ICDH1 is one of the most common alterations. …


Engineering Of Escherichia Coli 2-Oxoglutarate Dehydrogenase Complex With Mechanistic And Synthetic Goals, Joydeep Chakraborty Aug 2019

Engineering Of Escherichia Coli 2-Oxoglutarate Dehydrogenase Complex With Mechanistic And Synthetic Goals, Joydeep Chakraborty

Dissertations

The Escherichia coli 2-oxoglutarate dehydrogenase complex (OGDHc) compromises multiple copies of three enzymes - 2-oxoglutarate dehydrogenase (E1o), dihydrolipoyl succinyltransferase (E2o), and dihydrolipoyl dehydrogenase (E3). OGDHc is found in the Krebs cycle and catalyzes the formation of the all-important succinyl-Coenzyme A (succinyl-CoA). OGDHc was engineered to understand the catalytic mechanism and optimized for chemical synthetic goals.

Succinyl-CoA formation takes place within the catalytic domain of E2o via a transesterification reaction. The succinyl group from the thiol ester of S8-succinyldihydrolipoyl-E2o is transferred to the thiol group of CoA. Mechanistic studies were designed to investigate enzymatic transthioesterification. His375 and Asp374 was shown to …


Electrochemically Reactive Membranes For Efficient Biomass Recovery, Pollutant Degradation And Commercialization, Likun Hua May 2019

Electrochemically Reactive Membranes For Efficient Biomass Recovery, Pollutant Degradation And Commercialization, Likun Hua

Dissertations

Micropollution in natural waters such as rivers and groundwater aquifers is a widespread problem that prevents these potentially potable sources from being used as drinking water. In the United States, approximately two-thirds of the over 1,200 most serious hazardous waste sites in the nation are contaminated with trichloroethylene (TCE), a potentially carcinogenic compound. Other emerging and environmentally persistent organic micropollutants include polyromantic hydrocarbons (PAHs), organophosphate flame retardants, endocrine disrupting compounds (EDCs), pesticides, herbicides, pharmaceuticals and personal care products (PPCPs). Membrane filtration is one of the most efficient separation processes widely used for water treatment and pollutant removal. However, traditional membrane …


Peroxisomal Protein Defects Disrupt Coordinated Peroxisomal Processes And Affect Early Seedling Development Through Accumulating Toxic Catabolic Intermediates, Ying Li Apr 2019

Peroxisomal Protein Defects Disrupt Coordinated Peroxisomal Processes And Affect Early Seedling Development Through Accumulating Toxic Catabolic Intermediates, Ying Li

Dissertations

Many peroxisomal proteins act in β-oxidation processes on a range of substrates. It is unclear how these proteins are coordinated to determine the flux of peroxisomal processes and meet the requirements for plant growth and development. Using mutant analysis and metabolic profiling, I examined proteins predicted to act in fatty acid and indole-butyric-acid (IBA) β-oxidation. ECH2 confers enoyl-CoA hydratase activity for the auxiliary β-oxidation of fatty acids with an even cis-unsaturated bond. ECH2 was suggested to function in IBA β-oxidation, as ech2 seedlings have altered IBA response. ech2 seedlings have reduced root length and cotyledon area. ech2 seedlings accumulate 3-hydroxyoctenoate …


Yczr, A New Case Of Plp-Dependent Mocr/Gabr Type Transcription Regulator In Klebsiella Pneumonia, Yuanzhang Zheng Jan 2019

Yczr, A New Case Of Plp-Dependent Mocr/Gabr Type Transcription Regulator In Klebsiella Pneumonia, Yuanzhang Zheng

Dissertations

Increasing number of genes encoding PLP-dependent transcription regulators, MocR/GabR type regulators, have been identified in various bacterial genomes. However, only a handful of them, including MocR, PdxR and GabR have been studied experimentally. They control different aspects of the bacterial metabolism. Only GabR has reported crystallographic structures. MocR/GabR regulators possess a chimeric structure consisted of a WHTH DNA binding domain and an Aminotransferase-like regulation domain, which can bind PLP as an effector in transcription regulation. Such a chimeric construct presents an interesting case in molecular evolution. The regulation domains of All MocR/GabR type regulators loss their catalytic capacity during evolution …


Characterization Of The Effects Of Sex And Estrogen Receptor Signaling On Antigen-Specific T Cells For Immunotherapy, Flor Cecilia Navarro Negredo Jan 2019

Characterization Of The Effects Of Sex And Estrogen Receptor Signaling On Antigen-Specific T Cells For Immunotherapy, Flor Cecilia Navarro Negredo

Dissertations

Adoptive cell transfer (ACT) immunotherapy using antigen (Ag)-specific T cells is partially effective treating several malignancies but numerous challenges remain in order to improve its therapeutic potential. The roles of host factors, such as sex hormone receptor signaling, that can affect the T cell anti-tumor function remain understudied. The work performed in this dissertation characterized the role of estrogen signaling on T cell function in vitro, and during ACT immunotherapy against hepatocellular carcinoma (HCC) in vivo. Estrogen signaling through ERa enhanced the expression and secretion of Type I effector cytokines including IFNg, TNFa, and Granzyme B in male and female …


Fluorescent Probes And Functionalized Nanoparticles For Bioimaging: Synthesis, Photophysical Properties And Applications, Xinglei Liu May 2018

Fluorescent Probes And Functionalized Nanoparticles For Bioimaging: Synthesis, Photophysical Properties And Applications, Xinglei Liu

Dissertations

The development of new organic molecular probes with excellent photophysical properties and high fluorescence quantum yields is of considerable interest to many research areas including one- and two-photon fluorescence microscopy, fluorescence-based sensing methodologies, and cancer therapy. Series of organic linear-/non-linear optical molecules including squaraine derivatives, and fluorene derivatives as well as other bioconjugates are designed and synthesized during the doctoral study for the aim of ion detection (Chapter 5), photo dynamic therapy, and deep-tissue imaging (Chapter 4). These optical probes are capable of absorbing light in the near infrared (NIR) window and thus have deeper penetration and cause less photodamage …


Roles Of Phospholipases And Ribosomal S6 Kinase In Lipid Remodeling And Growth In Arabidopsis Response To Phosphate Deprivation, Yuan Su Apr 2018

Roles Of Phospholipases And Ribosomal S6 Kinase In Lipid Remodeling And Growth In Arabidopsis Response To Phosphate Deprivation, Yuan Su

Dissertations

Phosphate (Pi) is one of three macronutrients for plants, which is vital for plant growth and development. Understanding the mechanism by which plants respond and adapt to Pi deficiency not only unveils functions of genes and pathways involved, but also provides potential tools to manipulate crops to better stand Pi stress in low Pi-containing lands. One of the significant metabolic changes in plants under Pi starvation is the membrane lipid remodeling that converts Pi-containing lipids such as phospholipids to Pi-free lipids, such as glycolipids. To elucidate the metabolism and regulation of lipid remodeling, this dissertation characterizes the role of two …


Dna Binding Kinetics Of Large Antiviral Hairpin Polyamides, Jacquelyn Niederschulte Apr 2018

Dna Binding Kinetics Of Large Antiviral Hairpin Polyamides, Jacquelyn Niederschulte

Dissertations

While vaccines exist for the some of the most problematic strains of human papillomavirus (HPV), a double stranded DNA virus, there is currently no cure. HPV remains one of the most commonly sexually transmitted infections and is responsible for virtually all cervical cancers and genital warts. Natural products Distamycin A and netropsin have inspired the hairpin Nmethylpyrrole (Py)/N-methylimidazole (Im) polyamides (PAs) studied here. The larger hairpin PAs, designed to bind to sites of 10 or more DNA bp, have been shown to be effective antivirals against oncogenic HPV strains 16, 18, and 31, while smaller hairpin PAs are not. Despite …