Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Biochemistry

Washington University in St. Louis

Cancer

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Mechanisms And Regulation Of Resection In Dna Damage Response, Sharad C. Paudyal Aug 2017

Mechanisms And Regulation Of Resection In Dna Damage Response, Sharad C. Paudyal

Arts & Sciences Electronic Theses and Dissertations

Deoxyribonucleic acid (DNA) encodes genetic information essential for cell survival and function. However, it is constantly under assault from endogenous and exogenous damaging agents that not only threaten our own survival but also affect the faithful transmission of genetic information to our offspring. Double-strand breaks (DSBs) are one of the most hazardous forms of DNA damage, which if unrepaired or improperly repaired could lead to plethora of systemic human diseases including cancer. To deal with this problem, cells have evolved with a mechanism called DNA damage response (DDR) to detect, signal, and repair the breaks by inducing multiple cellular events. …


Dna Replication Challenges: Telomeres And R Loops, Shankar Parajuli Aug 2017

Dna Replication Challenges: Telomeres And R Loops, Shankar Parajuli

Arts & Sciences Electronic Theses and Dissertations

Faithful DNA replication and repair are essential for maintaining genome stability and preventing various diseases including cancer. Both processes are executed by numerous redundant mechanisms to ensure that these processes are uninterrupted even when a primary mechanism fails. Despite this, they are not immune to challenges and failures leading to DNA damage and genome instability. These problems are more evident at the difficult-to-replicate regions of the genome such as the telomeres that cap and protect linear chromosome ends. Additionally, topological structures such as RNA:DNA hybrids, commonly referred to as R loops, can also present severe challenges to the DNA replication …