Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Biochemistry

PDF

Transcription

Institution
Publication Year
Publication
Publication Type

Articles 31 - 32 of 32

Full-Text Articles in Life Sciences

Gal4 Disrupts A Repressing Nucleosome During Activation Of Gal1 Transcription In Vivo, Jeffrey D. Axelrod, Michael S. Reagan, John Majors May 1993

Gal4 Disrupts A Repressing Nucleosome During Activation Of Gal1 Transcription In Vivo, Jeffrey D. Axelrod, Michael S. Reagan, John Majors

Biology Faculty Publications

Photofootprinting in vivo of GALl reveals an activation- dependent pattern between the UASG and the TATA box, in a sequence not required for transcriptional activation by GAL4. The pattern results from a nucleosome whose position depends on sequences within the UASG. In the wild-type gene, activation by GAL4 and derivatives disrupts this nucleosome. This activity is independent of interactions with DNA-bound core transcription factors and is proportional to the strength of the activator. Presence of the nucleosome correlates with low basal transcription levels under various conditions, suggesting a role in limiting basal expression. We propose a role for the GAL4 …


Circular Dichroism And Molecular Modeling Yield A Structure For The Complex Of Human Immunodeficiency Virus Type 1 Trans-Activation Response Rna And The Binding Region Of Tat, The Trans-Acting Transcriptional Activator, Erwann P. Loret, Philippe T. Georgel, W. Curtis Johnson Jr., Pui Shing Ho Oct 1992

Circular Dichroism And Molecular Modeling Yield A Structure For The Complex Of Human Immunodeficiency Virus Type 1 Trans-Activation Response Rna And The Binding Region Of Tat, The Trans-Acting Transcriptional Activator, Erwann P. Loret, Philippe T. Georgel, W. Curtis Johnson Jr., Pui Shing Ho

Biological Sciences Faculty Research

Transcription in the human immunodeficiency virus type 1 (HIV-1) retrovirus is regulated by binding the viral Tat protein (trans-acting transcriptional activator) to the trans-activation response (TAR) RNA sequence. Here, vacuum UV circular dichroism (VUV-CD) is used to study the structure of TAR and its complex with two peptide fragments that are important for Tat binding to TAR. The VUV-CD spectrum of TAR is typical of A-form RNA and is minimally perturbed when bound to either the short or the long Tat peptide. The CD spectra ofthe complexes indicate an extended structure in the argnine-rich region of Tat from amino acid …