Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 31 - 60 of 100

Full-Text Articles in Life Sciences

Heteromeric Assemblies Of Glua3 Flip And Flop Shows Differences In Their Channel Opening Kinetics, Nicholas Karl Jan 2018

Heteromeric Assemblies Of Glua3 Flip And Flop Shows Differences In Their Channel Opening Kinetics, Nicholas Karl

Legacy Theses & Dissertations (2009 - 2024)

Prior studies of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, including that of GluA3 AMPA receptor subunit, have shown that alternative mRNA splicing, which generates flip and flop variants with different amino acid sequences, gives rise to functional differences between the two variants. The goal of this MS thesis is to investigate the basic gating properties of the heteromeric complex channels formed from GluA2R/GluA3 AMPA receptor subunits and the different variants between the two subunits. The hypothesis to be tested is whether different GluA3 variants affect the channel gating properties when each of the variants is in a complex with the Q/R-site edited …


The Dissemination, Regulatory Role, And Evolution Of Mycobacterial Inteins, Danielle Skye Kelley Jan 2018

The Dissemination, Regulatory Role, And Evolution Of Mycobacterial Inteins, Danielle Skye Kelley

Legacy Theses & Dissertations (2009 - 2024)

Inteins are intervening protein elements, capable of coordinating escape from a host protein through a self-catalyzed mechanism, called protein splicing. This results in free intein and a mature host protein product. Inteins are also mobile elements and many contain homing endonucleases that enable the targeting to ectopic sites and invasion of novel niches. Inteins have been found across all three domains of life and are often present in replication, recombination, and repair proteins. However, it is unclear if the observed distribution is simply a factor of endonuclease preference or if inteins have been selectively maintained due to an adaptation that …


Rack1 Is A Critical Component In Ires-Mediated Translation, Ethan Asher Lafontaine Jan 2018

Rack1 Is A Critical Component In Ires-Mediated Translation, Ethan Asher Lafontaine

Legacy Theses & Dissertations (2009 - 2024)

Due to its sheer number of interacting partners, core ribosomal protein RACK1 is a key player in many cellular processes and has been shown to play a vital role of translation initiation of the Hepatitis C virus RNA. The HCV 5′ untranslated region contains an internal ribosome entry site. IRES-mediated translation is a process employed in eukaryotes by select viruses and some cellular mRNAs by which translation initiation bypasses the canonical mRNA cap-dependent pathway by means of an RNA secondary structure (the IRES). While cap-dependent translation requires the recruitment of a suite of initiation factors, IRES-mediated translation requires few to …


Genetically Engineered Polypeptides As Biomimetic Light Harvesting Optical Antenna, Jason P. Seeley Jan 2018

Genetically Engineered Polypeptides As Biomimetic Light Harvesting Optical Antenna, Jason P. Seeley

Legacy Theses & Dissertations (2009 - 2024)

Natural resources useful for the generation of energy are limited. The development of efficient materials capable of utilizing the abundant free solar radiation is of considerable interest. Utilization of otherwise wasted energy sources, including solar radiation, is a progressive step in the quest for sustainable energy. Solar radiation incident upon the earth’s surface exceeds current energy requirements and motivates scientists to investigate and develop functional devices and nanomaterials including light harvesting complexes (LHC) capable of capturing solar radiation for energy conversion and storage.


Functional Modulation Of Ampa Receptors By R/G Editing And Auxiliary Subunits, Wei Wen Jan 2018

Functional Modulation Of Ampa Receptors By R/G Editing And Auxiliary Subunits, Wei Wen

Legacy Theses & Dissertations (2009 - 2024)

The propagation of information in the central nervous system is, in essence, the flow of ions. Neurons connect with each other to form neural circuits that perform distinct functions, and these connections are formed through synapses. Excitatory and inhibitory synapses determine the excitability of a neuron, which further dictates the firing of action potentials. The major ion channels that mediate the transmission at the excitatory synapses are ionotropic glutamate receptors, among which AMPA receptors are responsible for the fast excitatory transmission. Therefore, the functionalities of AMPA receptors substantially affect the information flow, and dysfunction of them could potentially cause many …


Technology Development For Detection Of Circulating Disease Biomarkers From Liquid Biopsies Using Multifunctional Nanomaterials, Mustafa Balcioglu Jan 2018

Technology Development For Detection Of Circulating Disease Biomarkers From Liquid Biopsies Using Multifunctional Nanomaterials, Mustafa Balcioglu

Legacy Theses & Dissertations (2009 - 2024)

Despite the advance health care, devastating health conditions such as cancer and infectious diseases that affect populations worldwide are too often not diagnosed until morbid symptoms become apparent in the late phase. Obtaining an early and accurate diagnosis that reveal a hidden lethal threat before the disease becomes complicated may dramatically reduce the severity of its impact on the patient’s life and increase the probability of survival. For example, in the case of ovarian cancer, which is the fifth most common malignancy and the fifth leading cause of cancer mortality in women in the US, the 5-year relative survival is …


Raman Spectroscopy And Chemometrics For Forensic Bloodstain Analysis : Species Differentiation, Donor Age Estimation, And Dating Of Bloodstains, Kyle C. Doty Jan 2017

Raman Spectroscopy And Chemometrics For Forensic Bloodstain Analysis : Species Differentiation, Donor Age Estimation, And Dating Of Bloodstains, Kyle C. Doty

Legacy Theses & Dissertations (2009 - 2024)

The field of forensic science is constantly growing, so the advancement of old and unreliable techniques is at the forefront of what will lead to future progress and improvement. Current methods for identification and analysis of bloodstains are underwhelming due to the insignificant amount of information provided in a destructive, unreliable, and unsafe manner. As is the purpose of this research, creating new methodologies that are rapid, nondestructive, robust, statistically reliable, and safe would significantly advance the way bloodstains are currently analyzed, while providing more useful and relevant information for investigations and criminal proceedings. Raman spectroscopy, along with advanced statistical …


Mass Spectrometric Analysis And Machine Learning Enable Microorganism Classification Based On Rna Posttranscriptional Modifications, Colin Christopher Aldrich Jan 2017

Mass Spectrometric Analysis And Machine Learning Enable Microorganism Classification Based On Rna Posttranscriptional Modifications, Colin Christopher Aldrich

Legacy Theses & Dissertations (2009 - 2024)

RNA post-transcriptional modifications (PTMs) are dynamic features that can be up- or down-regulated by the health and metabolic state of a cell. These covalent modifications are installed and removed on RNA nucleosides by enzymes controlled by the activation and deactivation of specific genes. The goal of this research was to demonstrate that RNA PTMs can serve as a unique feature for the classification/identification of microorganisms. We utilized a scheme based on electrospray ionization mass spectrometry (ESI-MS) to obtain global PTM profiles from total RNA extracted from various microorganisms in optimal growth conditions as well as Salmonella typhimurium (S. typhimurium) spiked …


Structural Characterization Of The Interactions Of Nicotinamide And Analogs With Human Sirt6 By Saturation Transfer Difference (Std) Nmr And Site Directed Mutagenesis, Beatriz Elena Bolivar-Vega Jan 2017

Structural Characterization Of The Interactions Of Nicotinamide And Analogs With Human Sirt6 By Saturation Transfer Difference (Std) Nmr And Site Directed Mutagenesis, Beatriz Elena Bolivar-Vega

Legacy Theses & Dissertations (2009 - 2024)

The allosteric regulation of SIRT6 by nicotinamide (NAM), along with the growing evidence of this enzyme's key role in the immune response, prompted the mechanistic study of SIRT6 inhibition by pyrazinamide (PZA) and analogs. In our current study, PZA, an analog of NAM, was revealed to have a modest modulatory effect on SIRT6, an enzyme that regulates the NF-κB signaling pathway at the transcriptional level (a relevant pathway to inflammation). Similarly, the analogs of PZA, 5-Cl PZA, 5-MeO PZA, and POA exhibited a modulatory effect against SIRT6 in our in vitro studies, enabling identification of a potential new target for …


Study Of Biologically Important Macromolecules By Nuclear Magnetic Resonance, Christopher Michael Demott Jan 2017

Study Of Biologically Important Macromolecules By Nuclear Magnetic Resonance, Christopher Michael Demott

Legacy Theses & Dissertations (2009 - 2024)

Intrinsically disordered proteins or unstructured segments within proteins play an important role in cellular physiology and pathology. A combination of peptide aptamers selected by using the yeast-two-hybrid scheme, and in-cell NMR identified high affinity binders to a transiently structured intrinsically disordered proteins (IDP). This method was validated using the prokaryotic ubiquitin-like protein, Pup, of the Mycobacterium proteasome. We discover two peptide aptamers that bind to opposite sites of a transient helix in Pup, an intrinsically disordered protein, that have vastly different effects on the survival of Mycobacterium bovis BCG.


Novel Approaches To Mitigating Bacterial Biofilm Formation And Intercellular Communication, Stephen Kasper Jan 2017

Novel Approaches To Mitigating Bacterial Biofilm Formation And Intercellular Communication, Stephen Kasper

Legacy Theses & Dissertations (2009 - 2024)

Long thought of as solitary single-cell organisms, it is now widely accepted that bacteria can act and cooperate as social organisms. Phenomena such as biofilm formation and quorum sensing (QS) are two intimately intertwined cooperative behaviors that significantly contribute to the pathogenesis of many bacteria. Biofilms are surface associated communities of bacteria encased in a secreted extracellular matrix, which provides several advantages over an individualized lifestyle, such as increased protection from antimicrobial agents as well as enhanced opportunity for the exchange of genetic material. Bacterial QS is a system of population-based communication through the production, sensing, and response to chemical …


Further Development Of Raman Spectroscopy For Body Fluid Investigation : Forensic Identification, Limit Of Detection, And Donor Characterization, Claire K. Muro Jan 2017

Further Development Of Raman Spectroscopy For Body Fluid Investigation : Forensic Identification, Limit Of Detection, And Donor Characterization, Claire K. Muro

Legacy Theses & Dissertations (2009 - 2024)

The challenges to forensic body fluid analysis have placed limitations on the type of information that investigators can acquire and how that information can be collected. In recent years, Raman spectroscopy has proven itself useful for characterizing body fluids. In 2008, a large-scale investigation was undertaken to explore the use of Raman spectroscopy as a means of identifying body fluids. This work resulted in multidimensional Raman spectroscopic signatures for the five main body fluids: semen, peripheral blood, saliva, vaginal fluid, and sweat. These studies were incredibly successful and created the foundation for years of continued research. Accordingly, the studies included …


Discovering Small Molecule Inhibitors Targeted To Ligand-Stimulated Rage-Diaph1 Signaling Transduction, Jinhong Pan Jan 2017

Discovering Small Molecule Inhibitors Targeted To Ligand-Stimulated Rage-Diaph1 Signaling Transduction, Jinhong Pan

Legacy Theses & Dissertations (2009 - 2024)

The receptor of advanced glycation end product (RAGE) is a multiligand receptor of the immunoglobulin superfamily of cell surface molecules, which plays an important role in immune responses. Full-length RAGE includes three extracellular immunoglobulin domains, a transmembrane domain and an intracellular domain. It is a pattern recognition receptor that can bind diverse ligands. NMR spectroscopy and x-ray crystallization studies of the extracellular domains of RAGE indicate that RAGE ligands bind by distinct charge- and hydrophobicity-dependent mechanisms. It is found that calgranulin binding to the C1C2 domain or AGEs binding to the V domain activates extracellular signaling, which triggers interactions of …


Structural And Functional Characterization Of An Unusual Camp Responsive Transcription Factor, Cmr, In Tb Complex Mycobacteria, Sridevi Ranganathan Jan 2017

Structural And Functional Characterization Of An Unusual Camp Responsive Transcription Factor, Cmr, In Tb Complex Mycobacteria, Sridevi Ranganathan

Legacy Theses & Dissertations (2009 - 2024)

Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis in humans, is an intracellular pathogen that infects millions of people every year. Mtb can survive inside the host for extended periods of time by sensing and adapting to the host environmental stressors. Transcriptional gene regulation plays a critical role in this adaptation. This dissertation focuses on understanding the structural and functional aspects of one such transcriptional regulatory unit, Cmr (Rv1675c), in Mtb.


Multifunctional Nanomaterials Utilizing Hybridization Chain Reaction For Molecular Diagnostics And Bioanalytical Applications, Md Muhit Rana Jan 2017

Multifunctional Nanomaterials Utilizing Hybridization Chain Reaction For Molecular Diagnostics And Bioanalytical Applications, Md Muhit Rana

Legacy Theses & Dissertations (2009 - 2024)

DNA nanotechnology has shown great promise in molecular diagnostic, bioanalytical and biomedical applications. The great challenge of detecting target analytes, biomarkers and small molecules, in molecular diagnostics is low yield sensitivity. To address this challenge, different nanomaterials have been used for a long time and to date there is no such cost-effective bioanalytical technique which can detect these target biomarkers (DNA, RNA, circulating DNA/miRNA) or environmental heavy metal ions (Hg2+ and Ag+) in a cost-effective and efficient manner.


The Role Of N-Myc Downstream Regulated Gene 1 In Breast Cancer Lipid Metabolism, Christopher James Sevinsky Jan 2017

The Role Of N-Myc Downstream Regulated Gene 1 In Breast Cancer Lipid Metabolism, Christopher James Sevinsky

Legacy Theses & Dissertations (2009 - 2024)

Altered carbohydrate and lipid metabolism are increasingly well characterized hallmarks of aggressive breast cancers. While aerobic glycolysis, or “the Warburg effect”, is a well-established metabolic adaptation exploited by tumor cells, the understanding of unique aspects of cancer lipid metabolism lags behind. This is especially true regarding the coordination of complex lipid synthesis and trafficking pathways, which remains poorly understood. N-Myc Downstream Regulated Gene1 (NDRG1) is overexpressed in many solid tumors, but its function is unclear. The importance of NDRG1 is best exemplified by the effect of null mutations on human physiology: inactivating mutations give rise to the severe autosomal recessive …


A Laser-Pulse Photolysis Study Of The Mechanism Of Potentiation Of The Glua2qflip Ampa Receptors By Cx546, Yu-Chuan Shen Jan 2017

A Laser-Pulse Photolysis Study Of The Mechanism Of Potentiation Of The Glua2qflip Ampa Receptors By Cx546, Yu-Chuan Shen

Legacy Theses & Dissertations (2009 - 2024)

Insufficient activity of the α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate ion channels is involved in neurological disorders and developmental problems, such as schizophrenia, one of the most serious psychiatric diseases. Use of regulatory agents to enhance AMPA receptor activity under the circumstance has been shown therapeutically beneficial. Specifically, small-molecule compounds generally termed as potentiators or positive modulators of AMPA receptors have long been pursued as drug candidates for a potential treatment of these neurological disorders and diseases. The goal of my MS thesis work is to investigate the mechanism of potentiation on AMPA receptor by a classic potentiator known as CX546. The …


A Kinetic Study Of Regulation Of Glua1 Homomeric And Heteromeric Ampa Receptors By 2,3-Benzodiazepines, Yin-Shuo (Andrew) Wu Jan 2017

A Kinetic Study Of Regulation Of Glua1 Homomeric And Heteromeric Ampa Receptors By 2,3-Benzodiazepines, Yin-Shuo (Andrew) Wu

Legacy Theses & Dissertations (2009 - 2024)

AMPA receptors are a subtype of the ionotropic glutamate receptor family. They are ligand-gated or glutamate-activated, transmembrane ion channels that mediate the majority of excitatory synaptic transmission in the central nervous system. AMPA receptors are essential for neuronal development and brain functions, including learning and memory. Over-activation of calcium permeable AMPA receptors has been linked to some neurological diseases such as stroke, Alzheimer’s disease and amyotrophic lateral sclerosis. Inhibitors of glutamate receptors are therefore drug candidates for the potential treatment of these neurological diseases. One of the most promising classes of AMPA receptor antagonists is 2,3-benzodiazepine derivatives, thought to be …


Study Of Protein-Protein Interaction By Using In-Cell Nmr In Human Cells, Asma Salem M Aldousary Jan 2016

Study Of Protein-Protein Interaction By Using In-Cell Nmr In Human Cells, Asma Salem M Aldousary

Legacy Theses & Dissertations (2009 - 2024)

We developed a new technology to study protein-protein interaction in mammalian cells. This technology is based high resolution of Nucleic Magnetic Resonance (NMR) spectroscopy. Using this technology we studied interaction between the receptor for advanced glycation endproducts (RAGE). RAGE- is a multiligand receptor of immunoglobulin receptor family that is activated by a multitude of ligands. Activation of RAGE results in signal transduction that leads to the inflammatory response implicated in the complications of Diabetes. RAGE is an emergent drug target that has been explored for the variety of pathologist including cancers, neurological disorders, inflammatory disease, and diabetes. and Intracellular effector …


Investigation Of Enzymatically Synthesized Glycogen As A Novel Nanodendrimer For Therapeutic Delivery, Sarah Ann Engelberth Jan 2016

Investigation Of Enzymatically Synthesized Glycogen As A Novel Nanodendrimer For Therapeutic Delivery, Sarah Ann Engelberth

Legacy Theses & Dissertations (2009 - 2024)

The field of medicinal chemistry is ever expanding, designing and discovering new therapeutic strategies. Oftentimes, it is challenging for these therapeutics to undergo clinical translation due to ineffective administration or unwanted toxicity in vivo. As such, drug delivery vehicles are designed to overcome these hurdles, allowing for delivery to the site of action by improving biodistribution, protecting therapeutic cargo, and decreasing toxicity. The work presented here aims to investigate a naturally-derived carbohydrate nanodendrimer, enzymatically synthesized glycogen (ESG) for drug delivery. This nontoxic, highly-branched, glucose-based structure has interior void volumes to allow for cargo encapsulation as well as a large density …


The Use Of Ion Mobility Spectrometry-Mass Spectrometry For The Structural Elucidation Of Progressively Larger Nucleic Acids, Jennifer Lynn Lippens Jan 2016

The Use Of Ion Mobility Spectrometry-Mass Spectrometry For The Structural Elucidation Of Progressively Larger Nucleic Acids, Jennifer Lynn Lippens

Legacy Theses & Dissertations (2009 - 2024)

The biomedical community and pharmaceutical industry have come to rely in ever


The Gammaturc Nanomachine Mechanism And Future Applications, Timothy Riehlman Jan 2016

The Gammaturc Nanomachine Mechanism And Future Applications, Timothy Riehlman

Legacy Theses & Dissertations (2009 - 2024)

The complexity and precision of the eukaryotic cell’s cytoskeletal network is unrivaled by any man-made systems, perfected by billions of years of evolution, mastering elegant processes of self-assembly, error correction, and self-repair. Understanding the capabilities of these networks will have important and far reaching applications in human medicine by aiding our understanding of developmental processes, cellular division, and disease mechanisms, and through biomimicry will provide insights for biosynthetic manufacturing at the nanoscale and across scales. My research utilizes cross species techniques from Human to the model organism of Fission Yeast to investigate the structure and mechanisms of the g-tubulin ring …


Beta-Sheet Forming Peptides By Design : Control Of Folding And Applications, Gaius Takor Jan 2016

Beta-Sheet Forming Peptides By Design : Control Of Folding And Applications, Gaius Takor

Legacy Theses & Dissertations (2009 - 2024)

The focus of the present research is the synthesis of polypeptides for the study of protein folding and misfolding and for the development of novel polypeptide-based optical antennas in nanotechnology. It is hypothesized that simple polypeptides can be used as models to mimic in vivo folding of globular proteins. Desired repetitive polypeptides were genetically encoded and expressed in E. coli using conventional methods and characterized using a variety of spectroscopic (including circular dichroism (CD), deep UV resonance Raman (DUVRR), UV-vis and fluorescence) and microscopic (atomic force microscopy (AFM) and transmission electron microscopy (TEM)) techniques. The polypeptides predominantly formed bilayer, fibrillar …


A Survey Of The Current Drug Screening Techniques To Obtain Rational Design And Study Drug-Target Interactions, Stephen Dansereau Jan 2016

A Survey Of The Current Drug Screening Techniques To Obtain Rational Design And Study Drug-Target Interactions, Stephen Dansereau

Legacy Theses & Dissertations (2009 - 2024)

Different techniques have been developed over the years for the purpose of studying proteins and understanding their functions. Early techniques typically employed bioluminescence or fluorescence such such as the firefly protein luciferase and the jellyfish green fluorescent protein (GFP), respectively, to localize proteins within the cell. X-ray crystallography has also provided valuable structural details of many different proteins in vitro. Yet, nuclear magnetic resonance (NMR) spectroscopy offers the most realistic insight into proteins' physiologic structures and how proteins function in their native, cellular environments.


The Chemistry Of New Garlic-Derived Organosulfur Compounds And The Molecular Basis Of Olfaction, Berenice Dethier Jan 2016

The Chemistry Of New Garlic-Derived Organosulfur Compounds And The Molecular Basis Of Olfaction, Berenice Dethier

Legacy Theses & Dissertations (2009 - 2024)

Garlic is a very popular condiment that has been used around the world for centuries. It is also a source of a remarkably extensive range of organosulfur compounds, whose chemistry is the focus of this thesis. The central reaction in formation of these compounds is the enzymatic cleavage of alk(en)yl cysteine sulfoxides by alliinases, which leads to sulfenic acids. The latter can then undergo condensation and rearrangement into various organosulfur compounds. Three aspects of the chemistry of garlic have been investigated in this thesis.


The Structural Heterogeneity And Dynamics Of Base Stacking And Unstacking In Nucleic Acids, Ada Anna Sedova Jan 2015

The Structural Heterogeneity And Dynamics Of Base Stacking And Unstacking In Nucleic Acids, Ada Anna Sedova

Legacy Theses & Dissertations (2009 - 2024)

Base stacking provides stability to nucleic acid duplexes, and base unstacking is involved in numerous biological functions related to nucleic acids, including replication, repair, transcription, and translation. The patterns of base stacking and unstacking in available nucleic acid crystal structures were classified after separation into their individual single strand dinucleotide components and clustering using a k-means-based ensemble clustering method. The A- and B-form proximity of these dinucleotide structures were assessed to discover that RNA dinucleotides can approach B-form-like structures. Umbrella sampling molecular dynamics simulations were used to obtain the potential of mean force profiles for base unstacking at 5'-termini for …


Novel Nmr Based Technologies To Study Macromolecular Structures, Subhabrata Majumder Jan 2015

Novel Nmr Based Technologies To Study Macromolecular Structures, Subhabrata Majumder

Legacy Theses & Dissertations (2009 - 2024)

Nuclear Magnetic Resonance Spectroscopy (NMR) is one of the principle tools in structural biology to probe macromolecular structures and interactions. The atomic resolution afforded by this technique has been widely used to probe protein-protein, and protein-ligand interactions in-vitro. However, the natural milieu of the proteins is the living cell and the cellular cytoplasm is extremely heterogeneous. The NMR studies of folded protein in-cell, till now, have been limited by non-specific interactions of the cytosol. This thesis outlays a general methodology to study protein structure/interactions inside the living cells using NMR. In a closely related objective, it also describes the use …


Rna Aptamer Mediated Manipulation Of The 70 Kilodalton Heat Shock Protein Chaperone Machinery, Deepak Thirunavukarasu Jan 2015

Rna Aptamer Mediated Manipulation Of The 70 Kilodalton Heat Shock Protein Chaperone Machinery, Deepak Thirunavukarasu

Legacy Theses & Dissertations (2009 - 2024)

Protein quality control involves refolding of damaged proteins and facilitating degradation of irreparable proteins. Understanding the protein quality control mechanism is critical, since defects in it has been implicated in a number of age-related diseases like neurodegenerative diseases and also in cancer. A vast network of molecular chaperones and proteolytic systems collaborate to maintain protein quality control. The 70 kilodalton Heat shock protein (Hsp70) is a highly conserved and ubiquitous chaperone, which interacts with a variety of protein substrates including newly synthesized polypeptides, unfolded, partially misfolded and native proteins to maintain protein quality control. Hsp70 chaperone function is coupled to …


Mechanisms Of Dna Synthesis And Fidelity By Y-Family Translesion And C-Family Replicative Polymerases, Purba Mukherjee Jan 2014

Mechanisms Of Dna Synthesis And Fidelity By Y-Family Translesion And C-Family Replicative Polymerases, Purba Mukherjee

Legacy Theses & Dissertations (2009 - 2024)

Since the discovery of the DNA polymerase by Arthur Kornberg nearly 60 years ago, there have been great advances in understanding the involvement of polymerases in replication and repair. Years of genetic, biochemical and structural studies have lead to the classification of DNA-dependent DNA polymerases into six families: A, B, C, D, X and Y. In this work, I have focussed on two different families, C and Y. Hence this work is divided into two parts. Part one discusses the studies on Y-family polymerases. All Y-family polymerases are involved in replicating past DNA lesions. The ability to tolerate unnatural nucleotides …


Monitoring Ligand-Induced Nucleic Acid Conformational Changes Using Ion Mobility Spectrometry-Mass Spectrometry, Bill Kenneth Redick Jan 2014

Monitoring Ligand-Induced Nucleic Acid Conformational Changes Using Ion Mobility Spectrometry-Mass Spectrometry, Bill Kenneth Redick

Legacy Theses & Dissertations (2009 - 2024)

Three-dimensional structures of biopolymers frequently dictate the biological role those molecules play. As such, investigation into structure of nucleic acids can provide important information pertaining to how those nucleic acids work. Many nucleic acid species, especially single-stranded RNA, fold into unique structures that allow them to function properly. Metals, and other cationic species, are often bound to the nucleic acid to make folding into the proper structure more favorable by neutralizing the negative charge on the nucleic acid imparted by the phosphate group. This investigation explores tertiary structure of nucleic acids that have been folded in the presence of ligands …