Open Access. Powered by Scholars. Published by Universities.®

Other Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Other Engineering

Jointly-Learnt Networks For Future Action Anticipation Via Self-Knowledge Distillation And Cycle Consistency, Md Moniruzzaman, Zhaozheng Yin, Zhihai He, Ming-Chuan Leu, Ruwen Qin Jan 2022

Jointly-Learnt Networks For Future Action Anticipation Via Self-Knowledge Distillation And Cycle Consistency, Md Moniruzzaman, Zhaozheng Yin, Zhihai He, Ming-Chuan Leu, Ruwen Qin

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Future action anticipation aims to infer future actions from the observation of a small set of past video frames. In this paper, we propose a novel Jointly learnt Action Anticipation Network (J-AAN) via Self-Knowledge Distillation (Self-KD) and cycle consistency for future action anticipation. In contrast to the current state-of-the-art methods which anticipate the future actions either directly or recursively, our proposed J-AAN anticipates the future actions jointly in both direct and recursive ways. However, when dealing with future action anticipation, one important challenge to address is the future's uncertainty since multiple action sequences may come from or be followed by …


Derivation And Application Of A Conserved Orbital Energy For The Inverted Pendulum Bipedal Walking Model, Jerry E. Pratt, Sergey V. Drakunov Mar 2007

Derivation And Application Of A Conserved Orbital Energy For The Inverted Pendulum Bipedal Walking Model, Jerry E. Pratt, Sergey V. Drakunov

Sergey V. Drakunov

We present an analysis of a point mass, point foot, planar inverted pendulum model for bipedal walking. Using this model, we derive expressions for a conserved quantity, the “Orbital Energy”, given a smooth Center of Mass trajectory. Given a closed form Center of Mass Trajectory, the equation for the Orbital Energy is a closed form expression except for an integral term, which we show to be the first moment of area under the Center of Mass path. Hence, given a Center of Mass trajectory, it is straightforward and computationally simple to compute phase portraits for the system. In fact, for …