Open Access. Powered by Scholars. Published by Universities.®

Operations Research, Systems Engineering and Industrial Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Computer Sciences

Neural Networks

2006

Articles 1 - 2 of 2

Full-Text Articles in Operations Research, Systems Engineering and Industrial Engineering

Adaptive Critic Neural Network Force Controller For Atomic Force Microscope-Based Nanomanipulation, Qinmin Yang, Jagannathan Sarangapani Oct 2006

Adaptive Critic Neural Network Force Controller For Atomic Force Microscope-Based Nanomanipulation, Qinmin Yang, Jagannathan Sarangapani

Electrical and Computer Engineering Faculty Research & Creative Works

Automating the task of nanomanipulation is extremely important since it is tedious for humans. This paper proposes an atomic force microscope (AFM) based force controller to push nano particles on the substrates. A block phase correlation-based algorithm is embedded into the controller for the compensation of the thermal drift which is considered as the main external uncertainty during nanomanipulation. Then, the interactive forces and dynamics between the tip and the particle, particle and the substrate are modeled and analyzed. Further, an adaptive critic NN controller based on adaptive dynamic programming algorithm is designed and the task of pushing nano particles ...


Neural Network Based Decentralized Excitation Control Of Large Scale Power Systems, Wenxin Liu, Ganesh K. Venayagamoorthy, Donald C. Wunsch, David A. Cartes, Jagannathan Sarangapani Jul 2006

Neural Network Based Decentralized Excitation Control Of Large Scale Power Systems, Wenxin Liu, Ganesh K. Venayagamoorthy, Donald C. Wunsch, David A. Cartes, Jagannathan Sarangapani

Electrical and Computer Engineering Faculty Research & Creative Works

This paper presents a neural network (NN) based decentralized excitation controller design for large scale power systems. The proposed controller design considers not only the dynamics of generators but also the algebraic constraints of the power flow equations. The control signals are calculated using only local signals. The transient stability and the coordination of the subsystem controllers can be guaranteed. NNs are used to approximate the unknown/imprecise dynamics of the local power system and the interconnections. All signals in the closed loop system are guaranteed to be uniformly ultimately bounded (UUB). Simulation results with a 3-machine power system demonstrate ...