Open Access. Powered by Scholars. Published by Universities.®

Operations Research, Systems Engineering and Industrial Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Computer Sciences

Singapore Management University

PDF

Time windows

Publication Year

Articles 1 - 5 of 5

Full-Text Articles in Operations Research, Systems Engineering and Industrial Engineering

Grasp Based Metaheuristic To Solve The Mixed Fleet E-Waste Collection Route Planning Problem, Aldy Gunawan, Dang V.A. Nguyen, Pham K.M. Nguyen, Pieter. Vansteenwegen Aug 2023

Grasp Based Metaheuristic To Solve The Mixed Fleet E-Waste Collection Route Planning Problem, Aldy Gunawan, Dang V.A. Nguyen, Pham K.M. Nguyen, Pieter. Vansteenwegen

Research Collection School Of Computing and Information Systems

The digital economy has brought significant advancements in electronic devices, increasing convenience and comfort in people’s lives. However, this progress has also led to a shorter life cycle for these devices due to rapid advancements in hardware and software technology. As a result, e-waste collection and recycling have become vital for protecting the environment and people’s health. From the operations research perspective, the e-waste collection problem can be modeled as the Heterogeneous Vehicle Routing Problem with Multiple Time Windows (HVRP-MTW). This study proposes a metaheuristic based on the Greedy Randomized Adaptive Search Procedure complemented by Path Relinking (GRASP-PR) to solve …


A Diversity-Enhanced Memetic Algorithm For Solving Electric Vehicle Routing Problems With Time Windows And Mixed Backhauls, Jianhua Xiao, Jingguo Du, Zhiguang Cao, Xingyi Zhang, Yunyun Niu Jan 2023

A Diversity-Enhanced Memetic Algorithm For Solving Electric Vehicle Routing Problems With Time Windows And Mixed Backhauls, Jianhua Xiao, Jingguo Du, Zhiguang Cao, Xingyi Zhang, Yunyun Niu

Research Collection School Of Computing and Information Systems

The electric vehicle routing problem (EVRP) has been studied increasingly because of environmental concerns. However, existing studies on the EVRP mainly focus on time windows and sole linehaul customers, which might not be practical as backhaul customers are also ubiquitous in reality. In this study, we investigate an EVRP with time windows and mixed backhauls (EVRPTWMB), where both linehaul and backhaul customers exist and can be served in any order. To address this challenging problem, we propose a diversity-enhanced memetic algorithm (DEMA) that integrates three types of novel operators, including genetic operators based on adaptive selection mechanism, a selection operator …


Set Team Orienteering Problem With Time Windows, Aldy Gunawan, Vincent F. Yu, Andros Nicas Sutanto, Panca Jodiawan Jun 2021

Set Team Orienteering Problem With Time Windows, Aldy Gunawan, Vincent F. Yu, Andros Nicas Sutanto, Panca Jodiawan

Research Collection School Of Computing and Information Systems

This research introduces an extension of the Orienteering Problem (OP), known as Set Team Orienteering Problem with Time Windows (STOPTW), in which customers are first grouped into clusters. Each cluster is associated with a profit that will be collected if at least one customer within the cluster is visited. The objective is to find the best route that maximizes the total collected profit without violating time windows and time budget constraints. We propose an adaptive large neighborhood search algorithm to solve newly introduced benchmark instances. The preliminary results show the capability of the proposed algorithm to obtain good solutions within …


Well-Tuned Algorithms For The Team Orienteering Problem With Time Windows, Aldy Gunawan, Hoong Chuin Lau, Pieter Vansteenwegen, Kun Lu Aug 2017

Well-Tuned Algorithms For The Team Orienteering Problem With Time Windows, Aldy Gunawan, Hoong Chuin Lau, Pieter Vansteenwegen, Kun Lu

Research Collection School Of Computing and Information Systems

The Team Orienteering Problem with Time Windows (TOPTW) is the extension of the Orienteering Problem (OP) where each node is limited by a predefined time window during which the service has to start. The objective of the TOPTW is to maximize the total collected score by visiting a set of nodes with a limited number of paths. We propose two algorithms, Iterated Local Search and a hybridization of Simulated Annealing and Iterated Local Search (SAILS), to solve the TOPTW. As indicated in multiple research works on algorithms for the OP and its variants, determining appropriate parameter values in a statistical …


An Iterated Local Search Algorithm For Solving The Orienteering Problem With Time Windows, Aldy Gunawan, Hoong Chuin Lau, Kun Lu Apr 2015

An Iterated Local Search Algorithm For Solving The Orienteering Problem With Time Windows, Aldy Gunawan, Hoong Chuin Lau, Kun Lu

Research Collection School Of Computing and Information Systems

The Orienteering Problem with Time Windows (OPTW) is a variant of the Orienteering Problem (OP). Given a set of nodes including their scores, service times and time windows, the goal is to maximize the total of scores collected by a particular route considering a predefined time window during which the service has to start. We propose an Iterated Local Search (ILS) algorithm to solve the OPTW, which is based on several LocalSearch operations, such as swap, 2-opt, insert and replace. We also implement the combination between AcceptanceCriterion and Perturbation mechanisms to control the balance between diversification and intensification of the …