Open Access. Powered by Scholars. Published by Universities.®

Operations Research, Systems Engineering and Industrial Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Computer Sciences

Singapore Management University

PDF

Decision making

Publication Year

Articles 1 - 4 of 4

Full-Text Articles in Operations Research, Systems Engineering and Industrial Engineering

Online Traffic Signal Control Through Sample-Based Constrained Optimization, Srishti Dhamija, Alolika Gon, Pradeep Varakantham, William Yeoh Oct 2020

Online Traffic Signal Control Through Sample-Based Constrained Optimization, Srishti Dhamija, Alolika Gon, Pradeep Varakantham, William Yeoh

Research Collection School Of Computing and Information Systems

Traffic congestion reduces productivity of individuals by increasing time spent in traffic and also increases pollution. To reduce traffic congestion by better handling dynamic traffic patterns, recent work has focused on online traffic signal control. Typically, the objective in traffic signal control is to minimize expected delay over all vehicles given the uncertainty associated with the vehicle turn movements at intersections. In order to ensure responsiveness in decision making, a typical approach is to compute a schedule that minimizes the delay for the expected scenario of vehicle movements instead of minimizing expected delay over the feasible vehicle movement scenarios. Such …


Simultaneous Optimization And Sampling Of Agent Trajectories Over A Network, Hala Mostafa, Akshat Kumar, Hoong Chuin Lau May 2016

Simultaneous Optimization And Sampling Of Agent Trajectories Over A Network, Hala Mostafa, Akshat Kumar, Hoong Chuin Lau

Research Collection School Of Computing and Information Systems

We study the problem of optimizing the trajectories of agents moving over a network given their preferences over which nodes to visit subject to operational constraints on the network. In our running example, a theme park manager optimizes which attractions to include in a day-pass to maximize the pass’s appeal to visitors while keeping operational costs within budget. The first challenge in this combinatorial optimization problem is that it involves quantities (expected visit frequencies of each attraction) that cannot be expressed analytically, for which we use the Sample Average Approximation. The second challenge is that while sampling is typically done …


Shortest Path Based Decision Making Using Probabilistic Inference, Akshat Kumar Feb 2016

Shortest Path Based Decision Making Using Probabilistic Inference, Akshat Kumar

Research Collection School Of Computing and Information Systems

We present a new perspective on the classical shortest path routing (SPR) problem in graphs. We show that the SPR problem can be recast to that of probabilistic inference in a mixture of simple Bayesian networks. Maximizing the likelihood in this mixture becomes equivalent to solving the SPR problem. We develop the well known Expectation-Maximization (EM) algorithm for the SPR problem that maximizes the likelihood, and show that it does not get stuck in a locally optimal solution. Using the same probabilistic framework, we then address an NP-Hard network design problem where the goal is to repair a network of …


Partial Adjustable Autonomy In Multi-Agent Environment And Its Application To Military Logistics, Hoong Chuin Lau, Lucas Agussurja, Ramesh Thangarajoo Sep 2005

Partial Adjustable Autonomy In Multi-Agent Environment And Its Application To Military Logistics, Hoong Chuin Lau, Lucas Agussurja, Ramesh Thangarajoo

Research Collection School Of Computing and Information Systems

In a rapidly changing environment, the behavior and decision-making power of agents may have to be adaptive with respect to a fluctuating autonomy. In this paper, a centralized fuzzy approach is proposed to sense changes in environmental conditions and translate them to changes in agent autonomy. A distributed coalition formation scheme is then applied to allow agents in the new autonomy to renegotiate to establish schedule consistency. The proposed framework is applied to a real-time logistics control of a military hazardous material storage facility under peace-to-war transition.