Open Access. Powered by Scholars. Published by Universities.®

Operations Research, Systems Engineering and Industrial Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Computer Sciences

Singapore Management University

PDF

2023

Multi-agent systems

Articles 1 - 2 of 2

Full-Text Articles in Operations Research, Systems Engineering and Industrial Engineering

Constrained Multiagent Reinforcement Learning For Large Agent Population, Jiajing Ling, Arambam James Singh, Duc Thien Nguyen, Akshat Kumar Sep 2023

Constrained Multiagent Reinforcement Learning For Large Agent Population, Jiajing Ling, Arambam James Singh, Duc Thien Nguyen, Akshat Kumar

Research Collection School Of Computing and Information Systems

Learning control policies for a large number of agents in a decentralized setting is challenging due to partial observability, uncertainty in the environment, and scalability challenges. While several scalable multiagent RL (MARL) methods have been proposed, relatively few approaches exist for large scale constrained MARL settings. To address this, we first formulate the constrained MARL problem in a collective multiagent setting where interactions among agents are governed by the aggregate count and types of agents, and do not depend on agents’ specific identities. Second, we show that standard Lagrangian relaxation methods, which are popular for single agent RL, do not …


Coordinating Multi-Party Vehicle Routing With Location Congestion Via Iterative Best Response, Waldy Joe, Hoong Chuin Lau Jan 2023

Coordinating Multi-Party Vehicle Routing With Location Congestion Via Iterative Best Response, Waldy Joe, Hoong Chuin Lau

Research Collection School Of Computing and Information Systems

This work is motivated by a real-world problem of coordinating B2B pickup-delivery operations to shopping malls involving multiple non-collaborative logistics service providers (LSPs) in a congested city where space is scarce. This problem can be categorized as a vehicle routing problem with pickup and delivery, time windows and location congestion with multiple LSPs (or ML-VRPLC in short), and we propose a scalable, decentralized, coordinated planning approach via iterative best response. We formulate the problem as a strategic game where each LSP is a self-interested agent but is willing to participate in a coordinated planning as long as there are sufficient …