Open Access. Powered by Scholars. Published by Universities.®

Operations Research, Systems Engineering and Industrial Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering Faculty Research & Creative Works

Formation Control

Articles 1 - 3 of 3

Full-Text Articles in Operations Research, Systems Engineering and Industrial Engineering

Neural Network Control Of Mobile Robot Formations Using Rise Feedback, Jagannathan Sarangapani, Travis Alan Dierks Apr 2009

Neural Network Control Of Mobile Robot Formations Using Rise Feedback, Jagannathan Sarangapani, Travis Alan Dierks

Electrical and Computer Engineering Faculty Research & Creative Works

In this paper, an asymptotically stable (AS) combined kinematic/torque control law is developed for leader-follower-based formation control using backstepping in order to accommodate the complete dynamics of the robots and the formation, and a neural network (NN) is introduced along with robust integral of the sign of the error feedback to approximate the dynamics of the follower as well as its leader using online weight tuning. It is shown using Lyapunov theory that the errors for the entire formation are as and that the NN weights are bounded as opposed to uniformly ultimately bounded stability which is typical with most …


Asymptotic Stability Of Nonholonomic Mobile Robot Formations Using Multilayer Neural Networks, Jagannathan Sarangapani, Travis Alan Dierks Jan 2007

Asymptotic Stability Of Nonholonomic Mobile Robot Formations Using Multilayer Neural Networks, Jagannathan Sarangapani, Travis Alan Dierks

Electrical and Computer Engineering Faculty Research & Creative Works

In this paper, a combined kinematic/torque control law is developed for leader-follower based formation control using backstepping in order to accommodate the dynamics of the robots and the formation in contrast with kinematic-based formation controllers that are widely reported in the literature. A multilayer neural network (NN) is introduced along with robust integral of the sign of the error (RISE) feedback to approximate the dynamics of the follower as well as its leader using online weight tuning. It is shown using Lyapunov theory that the errors for the entire formation are asymptotically stable and the NN weights are bounded as …


Neural Network Control Of Robot Formations Using Rise Feedback, Jagannathan Sarangapani, Travis Alan Dierks Jan 2007

Neural Network Control Of Robot Formations Using Rise Feedback, Jagannathan Sarangapani, Travis Alan Dierks

Electrical and Computer Engineering Faculty Research & Creative Works

In this paper, a combined kinematic/torque control law is developed for leader-follower based formation control using backstepping in order to accommodate the dynamics of the robots and the formation in contrast with kinematic-based formation controllers that are widely reported in the literature. A neural network (NN) is introduced along with robust integral of the sign of the error (RISE) feedback to approximate the dynamics of the follower as well as its leader using online weight tuning. It is shown using Lyapunov theory that the errors for the entire formation are asymptotically stable and the NN weights are bounded as opposed …