Open Access. Powered by Scholars. Published by Universities.®

Operations Research, Systems Engineering and Industrial Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Operations Research, Systems Engineering and Industrial Engineering

Economic Model Predictive Control And Process Equipment: Control-Induced Thermal Stress In A Pipe, Helen Durand Jul 2019

Economic Model Predictive Control And Process Equipment: Control-Induced Thermal Stress In A Pipe, Helen Durand

Chemical Engineering and Materials Science Faculty Research Publications

Recent work on economic model predictive control (EMPC) has indicated that some processes may be operated in a more economically-optimal fashion under a time-varying operating policy than under a steady-state operating policy. However, a concern for time-varying operation is how such a change in operating policy might impact the equipment within which the processes being controlled are carried out. While under steady-state operation, the operating conditions to which equipment would regularly be exposed can be estimated, this would be more difficult to assess thoroughly a priori under time-varying operation. It could be explored whether the EMPC could be made aware ...


Economic Model Predictive Control Design Via Nonlinear Model Identification, Laura Giuliani, Helen Durand Aug 2018

Economic Model Predictive Control Design Via Nonlinear Model Identification, Laura Giuliani, Helen Durand

Chemical Engineering and Materials Science Faculty Research Publications

Increasing pushes toward next-generation/smart manufacturing motivate the development of economic model predictive control (EMPC) designs which can be practically deployed. For EMPC, the constraints, objective function, and accuracy of the state predictions would benefit from process models that describe the process physics. However, obtaining first- principles models of chemical process systems can be time-consuming or challenging such that it is preferable to develop physics-based process models automatically from process operating data. In this work, we take initial steps in this direction by suggesting that because experiments that are used to characterize first-principles models often target specific types of data ...


Data-Based Nonlinear Model Identification In Economic Model Predictive Control, Laura Giuliani, Helen Durand Jul 2018

Data-Based Nonlinear Model Identification In Economic Model Predictive Control, Laura Giuliani, Helen Durand

Chemical Engineering and Materials Science Faculty Research Publications

Many chemical/petrochemical processes in industry are not completely modeled from a first-principles perspective because of the complexity of the underlying physico-chemical phenomena and the cost of obtaining more accurate, physically relevant models. System identification methods have been utilized successfully for developing empirical, though not necessarily physical, models for advanced model-based control designs such as model predictive control (MPC) for decades. However, a fairly recent development in MPC is economic model predictive control (EMPC), which is an MPC formulated with an economics-based objective function that may operate a process in a dynamic (i.e., off steady-state) fashion, in which case ...


Condition Assessment Of End-Of-Use Products For Remanufacturing, Jovan Morgan Jan 2017

Condition Assessment Of End-Of-Use Products For Remanufacturing, Jovan Morgan

ROEU 2016-17

The goal of the project is to use the automated 3-D laser scanner using a Capnut as a test object to detect surface defects, corrosion and calculation error through offline quality inspection. potentially reducing labor time and cost for both consumers and manufacturers.