Open Access. Powered by Scholars. Published by Universities.®

Operations Research, Systems Engineering and Industrial Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Operations Research, Systems Engineering and Industrial Engineering

Modernization Of Scienttific Mathematics Formula In Technology, Iwasan D. Kejawa Ed.D, Prof. Iwasan D. Kejawa Ed.D Jul 2021

Modernization Of Scienttific Mathematics Formula In Technology, Iwasan D. Kejawa Ed.D, Prof. Iwasan D. Kejawa Ed.D

Department of Mathematics: Faculty Publications

Abstract
Is it true that we solve problem using techniques in form of formula? Mathematical formulas can be derived through thinking of a problem or situation. Research has shown that we can create formulas by applying theoretical, technical, and applied knowledge. The knowledge derives from brainstorming and actual experience can be represented by formulas. It is intended that this research article is geared by an audience of average knowledge level of solving mathematics and scientific intricacies. This work details an introductory level of simple, at times complex problems in a mathematical epidermis and computability and solvability in a Computer Science. …


Cyber-Physical System Characterization And Co-Regulation Of A Quadrotor Uas, Seth E. Doebbeling Aug 2017

Cyber-Physical System Characterization And Co-Regulation Of A Quadrotor Uas, Seth E. Doebbeling

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

An Unmanned Aircraft System (UAS) is a Cyber-Physical System (CPS) in which a host of real-time computational tasks contending for shared resources must be cooperatively managed to obtain mission objectives. Traditionally, control of the UAS is designed assuming a fixed, high sampling rate in order to maintain reliable performance and margins of stability. But emerging methods challenge this design by dynamically allocating resources to computational tasks, thereby affecting control and mission performance. To apply these emerging strategies, a characterization and understanding of the effects of timing on control and trajectory following performance is required. Going beyond traditional control evaluation techniques, …


Autonomous Capabilities For Small Unmanned Aerial Systems Conducting Radiological Response: Findings From A High-Fidelity Discovery Experiment, Brittany Duncan, Robin Murphy Jan 2014

Autonomous Capabilities For Small Unmanned Aerial Systems Conducting Radiological Response: Findings From A High-Fidelity Discovery Experiment, Brittany Duncan, Robin Murphy

School of Computing: Faculty Publications

This article presents a preliminary work domain theory and identifies autonomous vehicle, navigational, and mission capabilities and challenges for small unmanned aerial systems (SUASs) responding to a radiological disaster. Radiological events are representative of applications that involve flying at low altitudes and close proximities to structures. To more formally understand the guidance and control demands, the environment in which the SUAS has to function, and the expected missions, tasks, and strategies to respond to an incident, a discovery experiment was performed in 2013. The experiment placed a radiological source emitting at 10 times background radiation in the simulated collapse of …


A Study On Facility Planning Using Discrete Event Simulation: Case Study Of A Grain Delivery Terminal., Sarah M. Asio Jul 2011

A Study On Facility Planning Using Discrete Event Simulation: Case Study Of A Grain Delivery Terminal., Sarah M. Asio

Department of Industrial and Management Systems Engineering: Dissertations, Theses, and Student Research

The application of traditional approaches to the design of efficient facilities can be tedious and time consuming when uncertainty and a number of constraints exist. Queuing models and mathematical programming techniques are not able to capture the complex interaction between resources, the environment and space constraints for dynamic stochastic processes. In the following study discrete event simulation is applied to the facility planning process for a grain delivery terminal. The discrete event simulation approach has been applied to studies such as capacity planning and facility layout for a gasoline station and evaluating the resource requirements for a manufacturing facility. To …


Design And Development Of A Low-Cost High Range Resolution X-Band Radar, Paul C. Cantu Aug 2003

Design And Development Of A Low-Cost High Range Resolution X-Band Radar, Paul C. Cantu

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Synthetic Aperture Radar (SAR) is one of the main tools for microwave remote sensing because of its multi-dimensional high resolution characteristics and the capability to operate in nearly all weather conditions, day and night. The University of Nebraska-Lincoln (UNL) initiated the design and development of a low-cost airborne SAR in January 2001 to support our Airborne Remote Sensing Program. The objectives of this project are separated into various evolutionary stages. This thesis will focus on the initial phase of design and construction of an X-band high range resolution radar (HRR) using basic RF /microwave and digital components. The following stages …