Open Access. Powered by Scholars. Published by Universities.®

Operations Research, Systems Engineering and Industrial Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Operations Research, Systems Engineering and Industrial Engineering

Identifying An Optimization Technique For Maker Usage To Address Covid-19 Supply Shortfalls, Michael J. Wilson Dec 2021

Identifying An Optimization Technique For Maker Usage To Address Covid-19 Supply Shortfalls, Michael J. Wilson

Doctoral Dissertations

Fused Deposition Modeling (FDM) can be purchased for under five hundred dollars. The availability of these inexpensive systems has created a large hobbyist (or maker) community. For makers, FDM printing is used numerous uses.

With the onset of the COVID-19 pandemic, the needs for Personal Protective Equipment (PPE) skyrocketed. COVID-19 mitigation strategies such as social distancing, businesses closures, and shipping delays created significant supply shortfalls. The maker community stepped in to fill gaps in PPE supplies.

In the case of 3DP, optimization remains the domain of commercial entities. Optimization is, at best, ad-hoc for makers. With the need to PPE …


3d Printing For Solving Part Obscolescence, Ayman G. Alqarni Sep 2020

3d Printing For Solving Part Obscolescence, Ayman G. Alqarni

Theses and Dissertations

The purpose of this research was to highlight the issue of parts obsolescence and to highlight the possibility of using alternative methods to overcome parts shortage. Specifically, this thesis sought to answer the research question: is the three-dimensional printing technology (3D) an applicable approach to overcome part obsolescence. The research question was answered through data research and survey analysis. Notwithstanding, the diminished manufacturing sources and material shortages (DMSMS) management and other existing approaches, such as forecasting, contracting, and reverse engineering (RE), were discussed briefly in the literature review and profoundly in chapter IV to differentiate among applicable existing solutions toward …


Conduction Mapping For Quality Control Of Laser Powder Bed Fusion Additive Manufacturing, Chance M. Baxter Mar 2020

Conduction Mapping For Quality Control Of Laser Powder Bed Fusion Additive Manufacturing, Chance M. Baxter

Theses and Dissertations

A process was developed to identify potential defects in previous layers of Selective Laser Melting (SLM) Powder Bed Fusion (PBF) 3D printed metal parts using a mid-IR thermal camera to track infrared 3.8-4 m band emission over time as the part cooled to ambient temperature. Efforts focused on identifying anomalies in thermal conduction. To simplify the approach and reduce the need for significant computation, no attempts were made to calibrate measured intensity, extract surface temperature, apply machine learning, or compare measured cool-down behavior to computer model predictions. Raw intensity cool-down curves were fit to a simplified functional form designed to …


Tooling For Injection Molding Using Laser-Powder Bed Fusion., Mohith Ram Buxani Jul 2018

Tooling For Injection Molding Using Laser-Powder Bed Fusion., Mohith Ram Buxani

Electronic Theses and Dissertations

Laser-Powder Bed Fusion (L-PBF) has been considered for some time by the injection molding industry for the fabrication of tooling for injection molding in order to address large lead times and costs for tool-making. Computer-aided simulations are also routinely used to evaluate new part and mold designs as well as understanding the effects of material compositions and processing conditions on part quality and overall productivity. However, there remains a significant need to integrate the perspectives from injection molding, 3D printing, metal powders, and component design and process simulation to better utilize LPBF for fabricating tooling required for injection molding. The …


Effect Of Fused Filament Fabrication Process Parameters On The Mechanical Properties Of Carbon Fiber Reinforced Polymers, Abdulrahman S. Alwabel Sep 2017

Effect Of Fused Filament Fabrication Process Parameters On The Mechanical Properties Of Carbon Fiber Reinforced Polymers, Abdulrahman S. Alwabel

Theses and Dissertations

Carbon fiber reinforced polymer manufactured using additive manufacturing process is relatively a new process. The ability to predict the mechanical properties of these parts with high confidence will spread the use of these high-strength materials in more applications. The purpose of this research was to determine the effect of the build time between successive layers, arrangement of fiber and nylon layers, fiber start location, and the use of support material on the mechanical properties CFRP produced by additive manufacturing process using the MarkForged (MarkOne) 3D printer. A design of experiment (DOE) we preformed to develop a mathematical model describing the …


Viability Of Additive Manufacturing For Production And Tooling Applications: A Development Of The Business Case, Christopher Charles Griffin May 2017

Viability Of Additive Manufacturing For Production And Tooling Applications: A Development Of The Business Case, Christopher Charles Griffin

Masters Theses

As marketplace competition drives industrial innovation to increase product value and decrease production costs, emerging technologies foster a new era through Industry 4.0. One aspect of the movement, additive manufacturing, or 3D [three-dimensional] printing, contains potential to revolutionize traditional manufacturing techniques and approach to design. However, uncertainties within the processes and high investment costs deter corporations from implementing and developing the technology. While several industries are benefitting from additive manufacturing’s current state, as the technology continues to progress, more companies will need to evaluate it for industrial viability and adoption. As such, there exists a need for a framework to …


Improving The Mechanical Performance Of 3d Printed Parts Using Fused Filament Fabrication, Inderpreet Binning Jun 2016

Improving The Mechanical Performance Of 3d Printed Parts Using Fused Filament Fabrication, Inderpreet Binning

Industrial and Manufacturing Engineering

The 3D printing industry has seen rapid growth in the last 10 years and has been called the next industrial revolution. There are several different processes used in 3D printing, but the most popular process is called Fused Filament Fabrication (FFF) or Fused Deposition Modeling (FDM). This is the process where (most commonly) plastic filament enters a nozzle, is heated to a semi-liquid state, and then deposited into a pattern to create a print. One major drawback to this process is that the prints are anisotropic. This means that the strength of the print varies with the orientation that it …


Additive Manufacturing Process Parameter Effects On The Mechanical Properties Of Fused Filament Fabrication Nylon, Eric S. Holm Mar 2016

Additive Manufacturing Process Parameter Effects On The Mechanical Properties Of Fused Filament Fabrication Nylon, Eric S. Holm

Theses and Dissertations

The purpose of this research was to determine how varying Fused Filament Fabrication (FFF) process parameters affect the mechanical properties of PA6 nylon dog-bone specimens produced on the Mark One 3D Printer. A design of experiment (DOE) was conducted using the factors of layer height and raster angle orientation. The mechanical properties measured in the experiment were tensile modulus, yield stress, percent strain at yield, ultimate tensile strength and percent strain at break. An analysis of variance (ANOVA) was performed to identify which factors were statistically significant in influencing mechanical properties. Results of the ANOVA showed that layer height was …