Open Access. Powered by Scholars. Published by Universities.®

Operations Research, Systems Engineering and Industrial Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Operations Research, Systems Engineering and Industrial Engineering

Robust Distributed Scheduling Via Time Period Aggregation, Shih-Fen Cheng, John Tajan, Hoong Chuin Lau Dec 2015

Robust Distributed Scheduling Via Time Period Aggregation, Shih-Fen Cheng, John Tajan, Hoong Chuin Lau

Shih-Fen Cheng

In this paper, we evaluate whether the robustness of a market mechanism that allocates complementary resources could be improved through the aggregation of time periods in which resources are consumed. In particular, we study a multi-round combinatorial auction that is built on a general equilibrium framework. We adopt the general equilibrium framework and the particular combinatorial auction design from the literature, and we investigate the benefits and the limitation of time-period aggregation when demand-side uncertainties are introduced. By using simulation experiments on a real-life resource allocation problem from a container port, we show that, under stochastic conditions, the performance variation …


Robust Distributed Scheduling Via Time Period Aggregation, Shih-Fen Cheng, John Tajan, Hoong Chuin Lau Dec 2015

Robust Distributed Scheduling Via Time Period Aggregation, Shih-Fen Cheng, John Tajan, Hoong Chuin Lau

Shih-Fen Cheng

In this paper, we evaluate whether the robustness of a market mechanism that allocates complementary resources could be improved through the aggregation of time periods in which resources are consumed. In particular, we study a multi-round combinatorial auction that is built on a general equilibrium framework. We adopt the general equilibrium framework and the particular combinatorial auction design from the literature, and we investigate the benefits and the limitation of time-period aggregation when demand-side uncertainties are introduced. By using simulation experiments on a real-life resource allocation problem from a container port, we show that, under stochastic conditions, the performance variation …


Robust Distributed Scheduling Via Time Period Aggregation, Shih-Fen Cheng, John Tajan, Hoong Chuin Lau Dec 2015

Robust Distributed Scheduling Via Time Period Aggregation, Shih-Fen Cheng, John Tajan, Hoong Chuin Lau

Shih-Fen CHENG

In this paper, we evaluate whether the robustness of a market mechanism that allocates complementary resources could be improved through the aggregation of time periods in which resources are consumed. In particular, we study a multi-round combinatorial auction that is built on a general equilibrium framework. We adopt the general equilibrium framework and the particular combinatorial auction design from the literature, and we investigate the benefits and the limitation of time-period aggregation when demand-side uncertainties are introduced. By using simulation experiments on a real-life resource allocation problem from a container port, we show that, under stochastic conditions, the performance variation …


Retail Precinct Management: A Case Of Commercial Decentralization In Singapore, Robert De Souza, Hoong Chuin Lau, Mark Goh, Lindawati, Wee-Siong Ng, Puay-Siew Tan Jun 2015

Retail Precinct Management: A Case Of Commercial Decentralization In Singapore, Robert De Souza, Hoong Chuin Lau, Mark Goh, Lindawati, Wee-Siong Ng, Puay-Siew Tan

Research Collection School Of Computing and Information Systems

The synchronized last mile logistics concept seeks to address, through coordinated collaboration, several challenges that hinder reliability, cost efficiency, effective resource planning, scheduling and utilization; and increasingly, sustainability objectives. Subsequently, the meeting of service level and contractual commitments are competitively impacted with any loss of efficiency. These challenges, against a backdrop of Singapore, can essentially be addressed in selected industry sectors through a better understanding of logistics structures; innovative supply chain designs and coordination of services, operations and processes coupled with concerted policies and supply chain strategies.