Open Access. Powered by Scholars. Published by Universities.®

Operations Research, Systems Engineering and Industrial Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics

PDF

Bucknell University

Series

Linearization

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Operations Research, Systems Engineering and Industrial Engineering

An Lp-Based Characterization Of Solvable Qap Instances With Chess-Board And Graded Structures, Lucas Waddell, Jerry Phillips, Tianzhu Liu, Swarup Dhar May 2023

An Lp-Based Characterization Of Solvable Qap Instances With Chess-Board And Graded Structures, Lucas Waddell, Jerry Phillips, Tianzhu Liu, Swarup Dhar

Faculty Journal Articles

The quadratic assignment problem (QAP) is perhaps the most widely studied nonlinear combinatorial optimization problem. It has many applications in various fields, yet has proven to be extremely difficult to solve. This difficulty has motivated researchers to identify special objective function structures that permit an optimal solution to be found efficiently. Previous work has shown that certain such structures can be explained in terms of a mixed 0-1 linear reformulation of the QAP known as the level-1 reformulation-linearization-technique (RLT) form. Specifically, the objective function structures were shown to ensure that a binary optimal extreme point solution exists to the continuous …


Strengthening A Linear Reformulation Of The 0-1 Cubic Knapsack Problem Via Variable Reordering, Richard Forrester, Lucas Waddell Jan 2022

Strengthening A Linear Reformulation Of The 0-1 Cubic Knapsack Problem Via Variable Reordering, Richard Forrester, Lucas Waddell

Faculty Journal Articles

The 0-1 cubic knapsack problem (CKP), a generalization of the classical 0-1 quadratic knapsack problem, is an extremely challenging NP-hard combinatorial optimization problem. An effective exact solution strategy for the CKP is to reformulate the nonlinear problem into an equivalent linear form that can then be solved using a standard mixed-integer programming solver. We consider a classical linearization method and propose a variant of a more recent technique for linearizing 0-1 cubic programs applied to the CKP. Using a variable reordering strategy, we show how to improve the strength of the linear programming relaxation of our proposed reformulation, which ultimately …