Open Access. Powered by Scholars. Published by Universities.®

Operations Research, Systems Engineering and Industrial Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Industrial Engineering

Theses/Dissertations

2023

Additive manufacturing

Articles 1 - 2 of 2

Full-Text Articles in Operations Research, Systems Engineering and Industrial Engineering

Monitoring Additive Manufacturing Machine Health, Jeremy Hale May 2023

Monitoring Additive Manufacturing Machine Health, Jeremy Hale

Doctoral Dissertations

Additive manufacturing (AM) allows the production of parts and goods with many benefits over more conventional manufacturing methods. AM permits more geometrically complex designs, custom and low-volume production runs, and the flexibility to produce a wide variety of parts on a single machine with reduced pre-production cost and time requirements. However, it can be difficult to determine the condition, or health, of an AM machine since complex designs can increase the variability of part quality. With fewer parts produced, destructive testing is less desirable and statistical methods of tracking part quality may be less informative. Combined with the relatively more …


Part Design Geometry-Driven Toolpath Optimization For Additive Manufacturing Energy Sustainability Improvement, David Kolawole Somade Jan 2023

Part Design Geometry-Driven Toolpath Optimization For Additive Manufacturing Energy Sustainability Improvement, David Kolawole Somade

Graduate Research Theses & Dissertations

One of the most promising new manufacturing technologies in the past three decades isadditive manufacturing (AM), also commonly known as three-dimensional (3D) printing or rapid prototyping. The energy consumption problem in AM can be significant when it is adopted at the industrial scale or used under resource-restricted conditions. The energy consumption of an AM process is influenced by several factors including bed heating, filament extrusion, material infill, component cooling, etc. All these factors are further determined by the equipment and the toolpath for a specific printing task. Build orientation and tool-path direction are frequently used to optimize part and process …