Open Access. Powered by Scholars. Published by Universities.®

Operations Research, Systems Engineering and Industrial Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Computer Sciences

Missouri University of Science and Technology

2007

Wireless Sensor Network

Articles 1 - 2 of 2

Full-Text Articles in Operations Research, Systems Engineering and Industrial Engineering

Predictive Congestion Control Protocol For Wireless Sensor Networks, Maciej Jan Zawodniok, Jagannathan Sarangapani Nov 2007

Predictive Congestion Control Protocol For Wireless Sensor Networks, Maciej Jan Zawodniok, Jagannathan Sarangapani

Electrical and Computer Engineering Faculty Research & Creative Works

Available congestion control schemes, for example transport control protocol (TCP), when applied to wireless networks, result in a large number of packet drops, unfair scenarios and low throughputs with a significant amount of wasted energy due to retransmissions. To fully utilize the hop by hop feedback information, this paper presents a novel, decentralized, predictive congestion control (DPCC) for wireless sensor networks (WSN). The DPCC consists of an adaptive flow and adaptive back-off interval selection schemes that work in concert with energy efficient, distributed power control (DPC). The DPCC detects the onset of congestion using queue utilization and the embedded channel …


Energy-Efficient Hybrid Key Management Protocol For Wireless Sensor Networks, Timothy J. Landstra, Maciej Jan Zawodniok, Jagannathan Sarangapani Oct 2007

Energy-Efficient Hybrid Key Management Protocol For Wireless Sensor Networks, Timothy J. Landstra, Maciej Jan Zawodniok, Jagannathan Sarangapani

Electrical and Computer Engineering Faculty Research & Creative Works

In this paper, we propose a subnetwork key management strategy in which the heterogeneous security requirements of a wireless sensor network are considered to provide differing levels of security with minimum communication overhead. Additionally, it allows the dynamic creation of high security subnetworks within the wireless sensor network and provides subnetworks with a mechanism for dynamically creating a secure key using a novel and dynamic group key management protocol. The proposed energy-efficient protocol utilizes a combination of pre-deployed group keys and initial trustworthiness of nodes to create a level of trust between neighbors in the network. This trust is later …