Open Access. Powered by Scholars. Published by Universities.®

Operations Research, Systems Engineering and Industrial Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Applied Mathematics

Series

Institution
Keyword
Publication Year
Publication

Articles 1 - 19 of 19

Full-Text Articles in Operations Research, Systems Engineering and Industrial Engineering

Characterizing Linearizable Qaps By The Level-1 Reformulation-Linearization Technique, Lucas Waddell, Warren Adams Feb 2024

Characterizing Linearizable Qaps By The Level-1 Reformulation-Linearization Technique, Lucas Waddell, Warren Adams

Faculty Journal Articles

The quadratic assignment problem (QAP) is an extremely challenging NP-hard combinatorial optimization program. Due to its difficulty, a research emphasis has been to identify special cases that are polynomially solvable. Included within this emphasis are instances which are linearizable; that is, which can be rewritten as a linear assignment problem having the property that the objective function value is preserved at all feasible solutions. Various known sufficient conditions for identifying linearizable instances have been explained in terms of the continuous relaxation of a weakened version of the level-1 reformulation-linearization-technique (RLT) form that does not enforce nonnegativity on a subset …


An Lp-Based Characterization Of Solvable Qap Instances With Chess-Board And Graded Structures, Lucas Waddell, Jerry Phillips, Tianzhu Liu, Swarup Dhar May 2023

An Lp-Based Characterization Of Solvable Qap Instances With Chess-Board And Graded Structures, Lucas Waddell, Jerry Phillips, Tianzhu Liu, Swarup Dhar

Faculty Journal Articles

The quadratic assignment problem (QAP) is perhaps the most widely studied nonlinear combinatorial optimization problem. It has many applications in various fields, yet has proven to be extremely difficult to solve. This difficulty has motivated researchers to identify special objective function structures that permit an optimal solution to be found efficiently. Previous work has shown that certain such structures can be explained in terms of a mixed 0-1 linear reformulation of the QAP known as the level-1 reformulation-linearization-technique (RLT) form. Specifically, the objective function structures were shown to ensure that a binary optimal extreme point solution exists to the continuous …


Strengthening A Linear Reformulation Of The 0-1 Cubic Knapsack Problem Via Variable Reordering, Richard Forrester, Lucas Waddell Jan 2022

Strengthening A Linear Reformulation Of The 0-1 Cubic Knapsack Problem Via Variable Reordering, Richard Forrester, Lucas Waddell

Faculty Journal Articles

The 0-1 cubic knapsack problem (CKP), a generalization of the classical 0-1 quadratic knapsack problem, is an extremely challenging NP-hard combinatorial optimization problem. An effective exact solution strategy for the CKP is to reformulate the nonlinear problem into an equivalent linear form that can then be solved using a standard mixed-integer programming solver. We consider a classical linearization method and propose a variant of a more recent technique for linearizing 0-1 cubic programs applied to the CKP. Using a variable reordering strategy, we show how to improve the strength of the linear programming relaxation of our proposed reformulation, which ultimately …


Data Driven Bayesian Network To Predict Critical Alarm, Joseph Mietkiewicz, Anders Madsen Jan 2022

Data Driven Bayesian Network To Predict Critical Alarm, Joseph Mietkiewicz, Anders Madsen

Articles

Modern industrial plants rely on alarm systems to ensure their safe and effective functioning. Alarms give the operator knowledge about the current state of the industrial plants. Trip alarms indicating a trip event indicate the shutdown of systems. Trip events in power plants can be costly and critical for the running of the operation.This paper demonstrates how trips events based on an alarm log from an offshore gas production can be reliably predicted using a Bayesian network. If a trip event is reliably predicted and the main cause of it is identified, it will allow the operator to prevent it. …


A Literature Review On Combining Heuristics And Exact Algorithms In Combinatorial Optimization, Hesamoddin Tahami, Hengameh Fakhravar Jan 2022

A Literature Review On Combining Heuristics And Exact Algorithms In Combinatorial Optimization, Hesamoddin Tahami, Hengameh Fakhravar

Engineering Management & Systems Engineering Faculty Publications

There are several approaches for solving hard optimization problems. Mathematical programming techniques such as (integer) linear programming-based methods and metaheuristic approaches are two extremely effective streams for combinatorial problems. Different research streams, more or less in isolation from one another, created these two. Only several years ago, many scholars noticed the advantages and enormous potential of building hybrids of combining mathematical programming methodologies and metaheuristics. In reality, many problems can be solved much better by exploiting synergies between these approaches than by “pure” classical algorithms. The key question is how to integrate mathematical programming methods and metaheuristics to achieve such …


Modernization Of Scienttific Mathematics Formula In Technology, Iwasan D. Kejawa Ed.D, Prof. Iwasan D. Kejawa Ed.D Jul 2021

Modernization Of Scienttific Mathematics Formula In Technology, Iwasan D. Kejawa Ed.D, Prof. Iwasan D. Kejawa Ed.D

Department of Mathematics: Faculty Publications

Abstract
Is it true that we solve problem using techniques in form of formula? Mathematical formulas can be derived through thinking of a problem or situation. Research has shown that we can create formulas by applying theoretical, technical, and applied knowledge. The knowledge derives from brainstorming and actual experience can be represented by formulas. It is intended that this research article is geared by an audience of average knowledge level of solving mathematics and scientific intricacies. This work details an introductory level of simple, at times complex problems in a mathematical epidermis and computability and solvability in a Computer Science. …


A Sequential Partial Information Bomber‐Defender Shooting Problem, Krishna Kalyanam, David W. Casbeer, Meir Pachter Feb 2020

A Sequential Partial Information Bomber‐Defender Shooting Problem, Krishna Kalyanam, David W. Casbeer, Meir Pachter

Faculty Publications

No abstract provided.


Reliability Estimation Of Reciprocating Seals Based On Multivariate Dependence Analysis And It's Experimental Validation, Chao Zhang, Rentong Chen, Shaoping Wang, Yujie Qian, Mileta M. Tomovic Jan 2019

Reliability Estimation Of Reciprocating Seals Based On Multivariate Dependence Analysis And It's Experimental Validation, Chao Zhang, Rentong Chen, Shaoping Wang, Yujie Qian, Mileta M. Tomovic

Engineering Technology Faculty Publications

Accurate reliability estimation for reciprocating seals is of great significance due to their wide use in numerous engineering applications. This work proposes a reliability estimation method for reciprocating seals based on multivariate dependence analysis of different performance indicators. Degradation behavior corresponding to each performance indicator is first described by the Wiener process. Dependence among different performance indicators is then captured using D-vine copula, and a weight-based copula selection method is utilized to determine the optimal bivariate copula for each dependence relationship. A two-stage Bayesian method is used to estimate the parameters in the proposed model. Finally, a reciprocating seal degradation …


A Mathematical Framework On Machine Learning: Theory And Application, Bin Shi Nov 2018

A Mathematical Framework On Machine Learning: Theory And Application, Bin Shi

FIU Electronic Theses and Dissertations

The dissertation addresses the research topics of machine learning outlined below. We developed the theory about traditional first-order algorithms from convex opti- mization and provide new insights in nonconvex objective functions from machine learning. Based on the theory analysis, we designed and developed new algorithms to overcome the difficulty of nonconvex objective and to accelerate the speed to obtain the desired result. In this thesis, we answer the two questions: (1) How to design a step size for gradient descent with random initialization? (2) Can we accelerate the current convex optimization algorithms and improve them into nonconvex objective? For application, …


Communication Based Control For Dc Microgrids, Mahmoud S. Saleh, Yusef Esa, Ahmed Mohamed Jan 2018

Communication Based Control For Dc Microgrids, Mahmoud S. Saleh, Yusef Esa, Ahmed Mohamed

Publications and Research

Centralized communication-based control is one of the main methods that can be implemented to achieve autonomous advanced energy management capabilities in DC microgrids. However, its major limitation is the fact that communication bandwidth and computation resources are limited in practical applications. This can be often improved by avoiding redundant communications and complex computations. In this paper, an autonomous communication-based hybrid state/event driven control scheme is proposed. This control scheme is hierarchical and heuristic, such that on the primary control level, it encompasses state-driven local controllers, and on the secondary control level, an event-driven MG centralized controller (MGCC) is used. This …


Wavelet Anova Bisection Method For Identifying Simulation Model Bias, Andrew D. Atkinson, Raymond R. Hill, Joseph J. Pignatiello Jr., G. Geoffrey Vining, Edward D. White, Eric Chicken Jan 2018

Wavelet Anova Bisection Method For Identifying Simulation Model Bias, Andrew D. Atkinson, Raymond R. Hill, Joseph J. Pignatiello Jr., G. Geoffrey Vining, Edward D. White, Eric Chicken

Faculty Publications

High-resolution computer models can simulate complex systems and processes in order to evaluate a solution quickly and inexpensively. Many simulation models produce dynamic functional output, such as a set of time-series data generated during a process. These computer models require verification and validation (V&V) to assess the correctness of these simulations. In particular, the model validation effort evaluates if the model is an appropriate representation of the real-world system that it is meant to simulate. However, when assessing a model capable of generating functional output, it is useful to learn more than simply whether the model is valid or invalid. …


Heuristic And Exact Algorithms For The Two-Machine Just In Time Job Shop Scheduling Problem, Mohammed Al Salem, Leonardo Bedoya-Valencia, Ghaith Rabadi Jan 2016

Heuristic And Exact Algorithms For The Two-Machine Just In Time Job Shop Scheduling Problem, Mohammed Al Salem, Leonardo Bedoya-Valencia, Ghaith Rabadi

Engineering Management & Systems Engineering Faculty Publications

The problem addressed in this paper is the two-machine job shop scheduling problem when the objective is to minimize the total earliness and tardiness from a common due date (CDD) for a set of jobs when their weights equal 1 (unweighted problem). This objective became very significant after the introduction of the Just in Time manufacturing approach. A procedure to determine whether the CDD is restricted or unrestricted is developed and a semirestricted CDD is defined. Algorithms are introduced to find the optimal solution when the CDD is unrestricted and semirestricted. When the CDD is restricted, which is a much …


An Assessment Of The Performances Of Several Univariate Tests Of Normality, James Olusegun Adefisoye Mar 2015

An Assessment Of The Performances Of Several Univariate Tests Of Normality, James Olusegun Adefisoye

FIU Electronic Theses and Dissertations

The importance of checking the normality assumption in most statistical procedures especially parametric tests cannot be over emphasized as the validity of the inferences drawn from such procedures usually depend on the validity of this assumption. Numerous methods have been proposed by different authors over the years, some popular and frequently used, others, not so much. This study addresses the performance of eighteen of the available tests for different sample sizes, significance levels, and for a number of symmetric and asymmetric distributions by conducting a Monte-Carlo simulation. The results showed that considerable power is not achieved for symmetric distributions when …


Data Mining Based Hybridization Of Meta-Raps, Fatemah Al-Duoli, Ghaith Rabadi Jan 2014

Data Mining Based Hybridization Of Meta-Raps, Fatemah Al-Duoli, Ghaith Rabadi

Engineering Management & Systems Engineering Faculty Publications

Though metaheuristics have been frequently employed to improve the performance of data mining algorithms, the opposite is not true. This paper discusses the process of employing a data mining algorithm to improve the performance of a metaheuristic algorithm. The targeted algorithms to be hybridized are the Meta-heuristic for Randomized Priority Search (Meta-RaPS) and an algorithm used to create an Inductive Decision Tree. This hybridization focuses on using a decision tree to perform on-line tuning of the parameters in Meta-RaPS. The process makes use of the information collected during the iterative construction and improvement phases Meta-RaPS performs. The data mining algorithm …


Spatial And Temporal Correlations Of Freeway Link Speeds: An Empirical Study, Piotr J. Rachtan Jan 2012

Spatial And Temporal Correlations Of Freeway Link Speeds: An Empirical Study, Piotr J. Rachtan

Masters Theses 1911 - February 2014

Congestion on roadways and high level of uncertainty of traffic conditions are major considerations for trip planning. The purpose of this research is to investigate the characteristics and patterns of spatial and temporal correlations and also to detect other variables that affect correlation in a freeway setting. 5-minute speed aggregates from the Performance Measurement System (PeMS) database are obtained for two directions of an urban freeway – I-10 between Santa Monica and Los Angeles, California. Observations are for all non-holiday weekdays between January 1st and June 30th, 2010. Other variables include traffic flow, ramp locations, number of lanes and the …


A Study On Facility Planning Using Discrete Event Simulation: Case Study Of A Grain Delivery Terminal., Sarah M. Asio Jul 2011

A Study On Facility Planning Using Discrete Event Simulation: Case Study Of A Grain Delivery Terminal., Sarah M. Asio

Department of Industrial and Management Systems Engineering: Dissertations, Theses, and Student Research

The application of traditional approaches to the design of efficient facilities can be tedious and time consuming when uncertainty and a number of constraints exist. Queuing models and mathematical programming techniques are not able to capture the complex interaction between resources, the environment and space constraints for dynamic stochastic processes. In the following study discrete event simulation is applied to the facility planning process for a grain delivery terminal. The discrete event simulation approach has been applied to studies such as capacity planning and facility layout for a gasoline station and evaluating the resource requirements for a manufacturing facility. To …


Simulation Of Engineering Systems Described By High-Index Dae And Discontinuous Ode Using Single Step Methods, Marc Compere Aug 2001

Simulation Of Engineering Systems Described By High-Index Dae And Discontinuous Ode Using Single Step Methods, Marc Compere

Publications

This dissertation presents numerical methods for solving two classes of or-dinary diferential equations (ODE) based on single-step integration meth-ods. The first class of equations addressed describes the mechanical dynamics of constrained multibody systems. These equations are ordinary differential equations (ODE) subject to algebraic constraints. Accordinly they are called differential-algebraic equations (DAE).

Specific contributions made in this area include an explicit transforma-tion between the Hessenberg index-3 form for constrained mechanical systems to a canonical state-space form used in the nonlinear control communities. A hybrid solution method was developed that incorporates both sliding-mode control (SMC) from the controls literature and post-stabilization from …


Maximally Disjoint Solutions Of The Set Covering Problem, David J. Rader, Peter L. Hammer Jul 1998

Maximally Disjoint Solutions Of The Set Covering Problem, David J. Rader, Peter L. Hammer

Mathematical Sciences Technical Reports (MSTR)

This paper is concerned with finding two solutions of a set covering problem that have a minimum number of variables in common. We show that this problem is NP­ complete, even in the case where we are only interested in completely disjoint solutions. We describe three heuristic methods based on the standard greedy algorithm for set covering problems. Two of these algorithms find the solutions sequentially, while the third finds them simultaneously. A local search method for reducing the overlap of the two given solutions is then described. This method involves the solution of a reduced set covering problem. Finally, …


Matrix Methods Of Approximating Classical Predator-Prey Problems, E. Y. Rodin, R. Greenberg, B. Nelson Jan 1988

Matrix Methods Of Approximating Classical Predator-Prey Problems, E. Y. Rodin, R. Greenberg, B. Nelson

Computer Science: Faculty Publications and Other Works

No abstract provided.