Open Access. Powered by Scholars. Published by Universities.®

Nuclear Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Nuclear Engineering

Effect Of Silicon Content On The Corrosion Resistance And Radiation-Induced Embrittlement Of Materials For Advanced Heavy Liquid Metal Nuclear Systems: Quarterly Progress Report (November 2005 – January 2006), Ajit K. Roy Apr 2006

Effect Of Silicon Content On The Corrosion Resistance And Radiation-Induced Embrittlement Of Materials For Advanced Heavy Liquid Metal Nuclear Systems: Quarterly Progress Report (November 2005 – January 2006), Ajit K. Roy

Transmutation Sciences Materials (TRP)

This task is intended to study the effect of Si content not only on the corrosion resistance but also on the radiation-induced embrittlement of martensitic stainless steels. The susceptibility of these alloys with different Si content to stress corrosion cracking, general corrosion and localized corrosion will be evaluated in the molten LBE and aqueous environments of different pH values using state-of-the-art testing techniques. Testing in the aqueous media is intended to develop baseline data for comparison purpose. Radiation-induced embrittlement of these alloys will initially be studied by irradiating the test specimens with bremmstrahlung gamma radiation from 20-40 MeV electron beams …


Effect Of Silicon Content On The Corrosion Resistance And Radiation- Induced Embrittlement Of Materials For Advanced Heavy Liquid Metal Nuclear Systems, Ajit K. Roy Jan 2006

Effect Of Silicon Content On The Corrosion Resistance And Radiation- Induced Embrittlement Of Materials For Advanced Heavy Liquid Metal Nuclear Systems, Ajit K. Roy

Transmutation Sciences Materials (TRP)

This task is primarily focused on the evaluation of the effect of Si content on the susceptibility of modified 9Cr-1Mo-0.24V steel to stress corrosion cracking (SCC) and localized cracking in both molten lead-bismuth eutectic (LBE) and an aqueous solution of acidic pH.

Further, significant efforts are in progress to characterize the deformation mechanism of modified T91 grade steel as a function of temperature and strain rate. Simultaneously, surface analyses of the tested materials are ongoing using state-of-the-art techniques including scanning electron microscopy (SEM) and transmission electron microscopy (TEM).


Cracking Of Martensitic Alloy Ep-823 Under Controlled Potential, Ajit K. Roy, M. K. Hossain Jan 2006

Cracking Of Martensitic Alloy Ep-823 Under Controlled Potential, Ajit K. Roy, M. K. Hossain

Mechanical Engineering Faculty Research

The susceptibility of martensitic Alloy EP-823 to stress corrosion cracking was evaluated with and without an applied cathodic potential using the slow-strain-rate (SSR) testing technique. The magnitude of the applied potential was based on the corrosion potential determined by cyclic polarization. The cracking susceptibility in an acidic environment at different temperatures was expressed in terms of the true failure stress (ơf), time to failure (TTF), and ductility parameters, including percent elongation (%El) and percent reduction in area (%RA). The data indicate that the magnitudes of ơr, TTF, %El, and %RA were reduced due to cathodic charging. …