Open Access. Powered by Scholars. Published by Universities.®

Nuclear Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Nuclear Engineering

Verification Of Tfit Code Numerical Method For Flow Excursion Simulation, Patrick S. Foster, Subash Sharma, Martin L. Bertodano Aug 2017

Verification Of Tfit Code Numerical Method For Flow Excursion Simulation, Patrick S. Foster, Subash Sharma, Martin L. Bertodano

The Summer Undergraduate Research Fellowship (SURF) Symposium

This research is aimed towards accurately modeling and predicting the onset of the two-phase flow excursion instability using the code TFIT (Two Fluid Interfacial Temperature). In order to do this we first had to show that the numerical diffusion of the code’s finite difference equations could be reduced to an insignificant level by decreasing the mesh size.

Understanding and being able to accurately model flow excursion can help us understand how to prevent the potential negative effects of this instability. We are using a two-fluid model with physics-based closure relations. The results will be validated against the experimental data available …


Numerical Simulation Of Metallic Uranium Sintering, Bruce Berry May 2017

Numerical Simulation Of Metallic Uranium Sintering, Bruce Berry

Graduate Theses and Dissertations

Conventional ceramic oxide nuclear fuels are limited in their thermal and life-cycle properties. The desire to operate at higher burnups as is required by current utility economics has proven a formidable challenge for oxide fuel designs. Metallic formulations have superior thermal performance but are plagued by volumetric swelling due to fission gas buildup. In this study, we consider a number of specific microstructure configurations that have been experimentally shown to exhibit considerable resistance to porosity loss. Specifically, a void sizing that is bimodally distributed was shown to resist early pore loss and could provide collection sites for fission gas buildup. …


Venus Lander Design, Garon Morgan, Brian Rodrigues, Dhruv Sachani, Jason Scott Jan 2017

Venus Lander Design, Garon Morgan, Brian Rodrigues, Dhruv Sachani, Jason Scott

Capstone Design Expo Posters

The students designed an Entry, Descent, and Landing (EDL) system for a lander to reach the surface of Venus. The students used a combination of 3D modelling and programming to design the EDL within given constraints under specific tolerances. An EDL takes into consideration entry flight dynamics, aeroheating, and landing systems. The EDL was divided into three stages (see below). The separation of stages was designed to address unique challenges found at different points throughout the EDL. The primary objective of the first stage was to minimize the heat associated with the entry velocity to the payload. The second stage …


Comparative Studies Of Diffusion Models And Artificial Neural Intelligence On Electrochemical Process Of U And Zr Dissolutions In Licl-Kcl Eutectic Salts, Samaneh Rakhshan Pouri Jan 2017

Comparative Studies Of Diffusion Models And Artificial Neural Intelligence On Electrochemical Process Of U And Zr Dissolutions In Licl-Kcl Eutectic Salts, Samaneh Rakhshan Pouri

Theses and Dissertations

The electrorefiner (ER) is the heart of pyroprocessing technology operating at a high-temperature (723 K – 773 K) to separate uranium from Experimental Breeder Reactor-II (EBR-II) used metallic fuel. One of the most common electroanalytical methods for determining the thermodynamic and electrochemical behavior of elemental species in the eutectic molten salt LiCl-KCl inside ER is cyclic voltammetry (CV). Information from CV can possibly be used to estimate diffusion coefficients, apparent standard potentials, transfer coefficients, and numbers of electron transferred. Therefore, predicting the trace of each species from the CV method in an absence of experimental data is important for safeguarding …