Open Access. Powered by Scholars. Published by Universities.®

Nuclear Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2014

Purdue University

Discipline
Keyword
Publication
Publication Type

Articles 1 - 14 of 14

Full-Text Articles in Nuclear Engineering

Investigation And Modeling Of Uranium Polarization For The Electrorefining Of Scrap U-Mo Foils, Melissa Rose Oct 2014

Investigation And Modeling Of Uranium Polarization For The Electrorefining Of Scrap U-Mo Foils, Melissa Rose

Open Access Dissertations

A uranium molybdenum alloy fuel has been proposed to convert research and test reactors from highly enriched uranium to low enriched uranium to increase the proliferation resistance at such reactors. Pyroprocessing has been selected to recover uranium from the scrap produced in the manufacture of this novel fuel type. Electrorefining, the main separation process of pyroprocessing, is modeled through a novel approach using corrosion theory. To use corrosion theory, knowledge of uranium polarization and kinetic parameters such as Tafel constant, transfer coefficient and exchange current density are required. Uranium polarization was investigated at five temperatures and three scan rates in …


Hydrogen Loading System Development And Evaluation Of Tritiated Substrates To Optimize Performance In Tritium Based Betavoltaics, Thomas E. Adams Oct 2014

Hydrogen Loading System Development And Evaluation Of Tritiated Substrates To Optimize Performance In Tritium Based Betavoltaics, Thomas E. Adams

Open Access Dissertations

State-of-the-art hydrogen loading system onto thin metallic films based on differential pressure in calibrated chambers has been developed for conditions pressures and temperatures up to 69 bar and 500°C, respectively. Experiments on hydrogen loading on to palladium films of thickness 50 and 250 nm were conducted at pressure ranging from 0.2 bar to 10 bar at temperature 310°C. For first time film hydrogen loading was carried out at 1 bar and at room temperature which temperature. Beta flux exiting surface of metal tritide films has been modeled with MC-SET (Monte Carlo Simulation of Electron Trajectories in solids). Surface beta flux …


Experimental Study Of Droplet Capable Conductivity Probe, Yikuan Yan Oct 2014

Experimental Study Of Droplet Capable Conductivity Probe, Yikuan Yan

Open Access Theses

This research focus on experimentally studying the performance of the newly designed Droplet Capable Conductivity Probe (DCCP). ^ A literature review is performed to illustrate the development of current two-fluid model and interfacial area transport equation. Previous conductivity probe instrumentation is also reviewed. The limitations of current conductivity probe design are described and the necessity of developing DCCP is illustrated. ^ The concept of DCCP-2 and DCCP-4 are introduced and experiments are performed to benchmark the capability of DCCP-4.


Developing Professional Skills In Stem Students: Data Information Literacy, Lisa Zilinski, Megan R. Sapp Nelson, Amy S. Van Epps Sep 2014

Developing Professional Skills In Stem Students: Data Information Literacy, Lisa Zilinski, Megan R. Sapp Nelson, Amy S. Van Epps

Libraries Faculty and Staff Scholarship and Research

Undergraduate STEM students are increasingly expected to have some data use skills upon graduation, whether they pursue post-graduate education or move into industry. This project was an initial foray into the application of data information literacy competencies to training undergraduate students to identify markers of data and information quality. The data consumer training appeared within two courses to help students evaluate data objects, including databases and datasets available on the Internet. The application of the Data Credibility Checklist provides a foundation for developing data reuse competencies. Based upon the initial presentation of the content, it became obvious that students need …


Double-Pulse Nd:Yag-Co2 Libs Excitation For Bulk And Trace Analytes, Jason R. Becker, Patrick Skrodzki, Prasoon Diwakar, Sivanandan Harilal, Ahmed Hassanein Aug 2014

Double-Pulse Nd:Yag-Co2 Libs Excitation For Bulk And Trace Analytes, Jason R. Becker, Patrick Skrodzki, Prasoon Diwakar, Sivanandan Harilal, Ahmed Hassanein

The Summer Undergraduate Research Fellowship (SURF) Symposium

Laser-induced breakdown spectroscopy [LIBS] is a commonly used technique for multi-element analyses for various applications such as space exploration, nuclear forensics, environmental analysis, process monitoring. The advantages of the LIBS technique include robustness, ease of use, field portability, and real-time, non-invasive multi-element analyses. However, in comparison to other lab based analytical techniques, it suffers from low precision and low sensitivity. In order to overcome these drawbacks, various approaches have been used, including double-pulse LIBS [DPLIBS]. Typically, various wavelength combinations of two Nd: yttrium aluminum garnet [YAG] lasers have been used for DPLIBS. However, the use of long wavelength (CO2 …


He+ Ion Irradiation On Tungsten Surface In Extreme Conditions, George I. Joseph, Jitendra Tripathi, Sivanandan S. Harilal, Ahmed Hassanein Aug 2014

He+ Ion Irradiation On Tungsten Surface In Extreme Conditions, George I. Joseph, Jitendra Tripathi, Sivanandan S. Harilal, Ahmed Hassanein

The Summer Undergraduate Research Fellowship (SURF) Symposium

Higher melting point (3695K), lower sputtering yield and most importantly, lower in-bulk, and co-deposit retention at elevated temperature makes tungsten (W) as a potential candidate for plasma-facing component (PFC) in the international thermonuclear experimental reactor (ITER)-divertor. Helium ion (He+) bombardment on W can cause wide variety of microstructural evolution, such as dislocation loops, helium holes/bubbles and fibre-form nanostructures (Fuzz) etc. In this work, 100 eV He+ ion irradiation, at temperature ranges from 500°C to 1000°C, will be performed on mechanically polished mirror like W surfaces. The surface modification and compositional analysis, due to ion irradiation, will be …


Optimizing Neutron Yield For Active Interrogation, Amanda M. Loveless, Allen L. Garner, Robert D. Bean, Nader Satvat Aug 2014

Optimizing Neutron Yield For Active Interrogation, Amanda M. Loveless, Allen L. Garner, Robert D. Bean, Nader Satvat

The Summer Undergraduate Research Fellowship (SURF) Symposium

Neutrons are commonly used for many applications, including active interrogation and cancer therapy. One critical aspect for active interrogation efficiency is neutron yield, which is more important for successful resolution than the energy spectrum. The typical approach for improving neutron yield entails producing more neutrons, which has motivated multiple studies using the interaction of increasingly more powerful tabletop lasers with plastic targets to generate protons or deuterons that are absorbed by another target to create neutrons [1]. Alternatively, one may use lenses to focus the neutrons to increase yield rather than simply generating more neutrons with more powerful lasers [2]. …


Energy Deposition In A Graphene Field Effect Transistor Based Radiation Detector, Nickolas Upole, Robert Bean, Allen Garner Aug 2014

Energy Deposition In A Graphene Field Effect Transistor Based Radiation Detector, Nickolas Upole, Robert Bean, Allen Garner

The Summer Undergraduate Research Fellowship (SURF) Symposium

The development of high-performance radiation detectors is essential for commercial, scientific, and security applications [1]. Due to the unique electronic properties of graphene (high-speed, low-noise), recent radiation detectors utilize graphene field effect transistors to sense charge carriers produced by radiation interactions in a gated semiconductor [2]. A study of the energy deposition due to the transport of gamma rays and electrons/positrons through typical elemental and compound semiconductors (Si, Ge, GaAs, and CdTe) will allow for a material optimization of these detectors. Geant4, a Monte Carlo based program that simulates the passage of particles through matter, was used to simulate Compton …


Comparison Of Thermal And Γ-Photon Induced Degradation In Polylactic Acid For Potential As A Solid-State Radiation Detector, Nathan M. Boyle, Alex Bakken, Rusi P. Taleyarkhan Aug 2014

Comparison Of Thermal And Γ-Photon Induced Degradation In Polylactic Acid For Potential As A Solid-State Radiation Detector, Nathan M. Boyle, Alex Bakken, Rusi P. Taleyarkhan

The Summer Undergraduate Research Fellowship (SURF) Symposium

Degradation of the biopolymer Polylactic Acid, both thermally and through irradiation will cause physical changes in the material. These changes can be used in applications such as adhesives and sealants or in medical applications, but the primary focus of this study is for use as a solid-state radiation detector. A literature review shows that current research has been focused on thermal and γ-photon degradation in PLA but the physical characteristics such as melting temperature, latent heat of fusion, and composition of molecular bonds have not been compared in the same study. This study focuses on how thermal properties of PLA …


Investigation Of The Performance Of Different Types Of Zirconium Microstructures Under Extreme Irradiation Conditions, Eric M. Acosta, Osman J. El-Atwani Aug 2014

Investigation Of The Performance Of Different Types Of Zirconium Microstructures Under Extreme Irradiation Conditions, Eric M. Acosta, Osman J. El-Atwani

The Summer Undergraduate Research Fellowship (SURF) Symposium

The safe and continued operation of the US nuclear power plants requires improvement of the radiation resistant properties of materials used in nuclear reactors. Zirconium is a material of particular interest due to its use in fuel cladding. Studies performed on other materials have shown that grain boundaries can play a significant role on the radiation resistant properties of a material. Thus, the focus of our research is to investigate the performance of different zirconium microstructures under irradiation conditions similar to those in commercial nuclear reactors. Analysis of the surface morphology of zirconium both pre- and post-irradiation was conducted with …


Doube-Pulse Laser-Induced Breakdown Spectroscopy Of Multi-Element Sample Containing Low- And High-Z Analytes, Patrick J. Skrodzki, Jason R. Becker, Prasoon K. Diwakar Ph. D., Sivanandan S. Harilal Ph. D., Ahmed Hassanein Ph. D. Aug 2014

Doube-Pulse Laser-Induced Breakdown Spectroscopy Of Multi-Element Sample Containing Low- And High-Z Analytes, Patrick J. Skrodzki, Jason R. Becker, Prasoon K. Diwakar Ph. D., Sivanandan S. Harilal Ph. D., Ahmed Hassanein Ph. D.

The Summer Undergraduate Research Fellowship (SURF) Symposium

Laser-induced breakdown spectroscopy (LIBS) is a portable, remote, non-invasive analytical technique which effectively distinguishes neutral and ionic species for a range of low- to high-Z elements in a multi-element target. Subsequently, LIBS holds potential in special nuclear material (SNM) sensing and nuclear forensics requiring minimal sample preparation and detecting isotopic shifts which allows for differentiation in SNM (namely U) enrichment levels. Feasible applications include not only nonproliferation and homeland security but also nuclear fuel prospecting and industrial safeguard endorsement. Elements of higher mass with complex atomic structures, such as U, however, result in crowded emission spectra with LIBS, and characteristic …


Correlating Grain Size To Radiation Damage Tolerance Of Tungsten Materials Exposed To Relevant Fusion Conditions, Sean Robert Gonderman Jul 2014

Correlating Grain Size To Radiation Damage Tolerance Of Tungsten Materials Exposed To Relevant Fusion Conditions, Sean Robert Gonderman

Open Access Theses

Tungsten remains a leading candidate for plasma facing component (PFC) in future fusion devices. This is in large part due to its strong thermal and mechanical properties. The ITER project has already chosen to use an all tungsten divertor. Despite having a high melting temperature and low erosion rate, tungsten faces a large variety of issues when subject to fusion like conditions. These include embrittlement, melting, and extreme morphology change (growth of fuzz nanostructure). The work presented here investigates mechanisms that drive surface morphology change in tungsten materials exposed to fusion relevant plasmas. Specifically, tungsten materials of different grain sizes …


Drift-Flux Correlation Development For Two-Phase Flow In Rod Bundles, Collin M. Clark Apr 2014

Drift-Flux Correlation Development For Two-Phase Flow In Rod Bundles, Collin M. Clark

Open Access Theses

A rod bundle drift-flux correlation is developed with intended application across a wide range of two-phase flow conditions. Special consideration is made for fluid flow mechanisms at low liquid velocity and low pressure conditions. In these instances, gravitational forces from the density difference of the associated fluid phases are more significant. Secondary flow patterns may develop as a result and a drift-flux correlation would need to make appropriate adjustments. Earlier correlations may have increased error at these conditions if they have been formulated with respect to relatively higher pressures or flow rates. In the present work, area-average void fraction data …


Understanding The Global Energy Crisis, Eugene D. Coyle, Richard A. Simmons Mar 2014

Understanding The Global Energy Crisis, Eugene D. Coyle, Richard A. Simmons

Purdue University Press Books

We are facing a global energy crisis caused by world population growth, an escalating increase in demand, and continued dependence on fossil-based fuels for generation. It is widely accepted that increases in greenhouse gas concentration levels, if not reversed, will result in major changes to world climate with consequential effects on our society and economy. This is just the kind of intractable problem that Purdue University’s Global Policy Research Institute seeks to address in the Purdue Studies in Public Policy series by promoting the engagement between policy makers and experts in fields such as engineering and technology.

Major steps forward …