Open Access. Powered by Scholars. Published by Universities.®

Nuclear Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Nuclear Engineering

Discrete Ordinates Ct Organ Dose Simulator (Doctors), Edward T. Norris Jan 2017

Discrete Ordinates Ct Organ Dose Simulator (Doctors), Edward T. Norris

Doctoral Dissertations

"Computed tomography (CT) has become pervasive in medical diagnostics as improved imaging techniques and processing algorithms provide higher quality information to doctors. However, the exponentially increasing usage of CT has raised concerns regarding long term low-dose radiological risks.

Currently, the dose to patients is computed using Monte Carlo methods and experimental tests. In other areas of radiation transport, deterministic codes have been shown to be much faster than Monte Carlo codes.

Currently, no deterministic methodology exists to automatically generate a spatially distributed dose profile from a CT voxel phantom. This work proposes a new code, Discrete Ordinate CT Organ Dose …


Particle Modeling Of Fuel Plate Melting During Coolant Flow Blockage In Hfir, Hiraku Nakamura May 2014

Particle Modeling Of Fuel Plate Melting During Coolant Flow Blockage In Hfir, Hiraku Nakamura

Doctoral Dissertations

Cooling channel inlet flow blockage has damaged fuel in plate fueled reactors and contributes significantly to the probability of fuel damage based on Probabilistic Risk Assessment. A Smoothed Particle Hydrodynamics (SPH) model for fuel melt from inlet flow blockage for the High Flux Isotope Reactor is created. The model is coded for high throughput graphics processing unit (GPU) calculations. This modeling approach allows movement toward quantification of the uncertainty in fuel coolant flow blockage consequence assessment. The SPH modeling approach is convenient for following movement of fuel and coolant during melt progression and provides a tool for capturing the interactions …