Open Access. Powered by Scholars. Published by Universities.®

Nuclear Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Nuclear Engineering

Equations Of State For Warm Dense Carbon From Quantum Espresso, Derek J. Schauss Jan 2021

Equations Of State For Warm Dense Carbon From Quantum Espresso, Derek J. Schauss

Theses and Dissertations

Warm dense plasma is the matter that exists, roughly, in the range of 10,000 to 10,000,000 Kelvin and has solid-like densities, typically between 0.1 and 10 grams per centimeter. Warm dense fluids like hydrogen, helium, and carbon are believed to make up the interiors of many planets, white dwarfs, and other stars in our universe. The existence of warm dense matter (WDM) on Earth, however, is very rare, as it can only be created with high-energy sources like a nuclear explosion. In such an event, theoretical and computational models that accurately predict the response of certain materials are thus very …


Investigations Of Point Defects In Kh2Po4 Crystals Using Ab Initio Quantum Methods, Tabitha E. R. Dodson Sep 2019

Investigations Of Point Defects In Kh2Po4 Crystals Using Ab Initio Quantum Methods, Tabitha E. R. Dodson

Theses and Dissertations

Potassium dihydrogen phosphate (KH2PO4, or commonly called KDP) crystals can be grown to large sizes and are used for many important devices (fast optical switches, frequency conversion, polarization rotation) for high powered lasers. The nonlinear optical material has a wide intrinsic transparency range. Intrinsic point defects are responsible for several short-lived absorption bands in the visible and ultraviolet regions that affect high-power pulsed laser propagation. The primary intrinsic defects have been experimentally detected in KDP using electron paramagnetic resonance (EPR) experiments. The defect models established thus far include (i) self-trapped holes, (ii) oxygen vacancies, and (iii) …