Open Access. Powered by Scholars. Published by Universities.®

Nuclear Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Conference

MPFD

Articles 1 - 2 of 2

Full-Text Articles in Nuclear Engineering

Numerical Evaluation Of Micro-Pocket Fission Detectors, Wenkai Fu, Daniel M. Nichols, Douglas S. Mcgregor, Jeremy A. Roberts Dec 2018

Numerical Evaluation Of Micro-Pocket Fission Detectors, Wenkai Fu, Daniel M. Nichols, Douglas S. Mcgregor, Jeremy A. Roberts

Symposium on Advanced Sensors and Modeling Techniques for Nuclear Reactor Safety

Micro-pocket fission detectors (MPFDs) are miniature fission chambers suitable for in-core neutron measurement that have been under development at Kansas State University for over one decade. Current-generation devices have been used at a number of university reactors (Kansas State, Wisconsin, and MIT) and as part of the first experiments performed during the recent restart of TREAT. Ongoing research aims to improve understanding of the existing MPFDs and to optimize designs for future deployment. To aid in this development, the dynamic response of a prototypic MPFD was evaluated using Garfield++, Elmer, Gmsh, and Stopping and Range of Ions in Matter (SRIM). …


Micro Structured Sensors For Neutron Detection, D. S. Mcgregor, S. L. Bellinger, J. C. Boyington, Y. Cheng, R. G. Fronk, W. Fu, L. C. Henson, J. D. Hewitt, C. W. Hilger, R. M. Hutchins, K. E. Kellogg, J. A. Medina, D. M. Nichols, T. R. Ochs, M. A. Reichenberger, J. A. Roberts, S. R. Stevenson, T. M. Swope, T. C. Unruh Dec 2018

Micro Structured Sensors For Neutron Detection, D. S. Mcgregor, S. L. Bellinger, J. C. Boyington, Y. Cheng, R. G. Fronk, W. Fu, L. C. Henson, J. D. Hewitt, C. W. Hilger, R. M. Hutchins, K. E. Kellogg, J. A. Medina, D. M. Nichols, T. R. Ochs, M. A. Reichenberger, J. A. Roberts, S. R. Stevenson, T. M. Swope, T. C. Unruh

Symposium on Advanced Sensors and Modeling Techniques for Nuclear Reactor Safety

The shortage of 3He gas, identified as a problem several years ago, initiated research into alternative neutron detectors for various applications. One such technology is the microstructured semiconductor neutron detector (MSND). These compact detectors have microstructures etched deeply into the substrates that are subsequently backfilled with neutron reactive material. Single sided devices typically have thermal neutron detection efficiencies exceeding 30%, while double sided microstructured semiconductor neutron detectors (DS-MSND) have yielded >69% thermal neutron detection efficiency. Both MSNDs and DS-MSNDs have been integrated into compact low-noise and low-power electronics modules. Dosimetry calculations indicate that these detectors can be used as …