Open Access. Powered by Scholars. Published by Universities.®

Nuclear Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Fuels Campaign (TRP)

Materials Science and Engineering

Keyword
Publication Year

Articles 1 - 22 of 22

Full-Text Articles in Nuclear Engineering

Interaction Between Metal Fission Products And Triso Coating Materials, Clemens Heske Jan 2008

Interaction Between Metal Fission Products And Triso Coating Materials, Clemens Heske

Fuels Campaign (TRP)

This project focuses on the chemical bonding and interface formation of metal fission products with the coating materials used in tri-isotropic (TRISO) fuel particles for gas-cooled reactors. By combining surface- and bulk-sensitive spectroscopic and microscopic methods, intermediate chemical phases at the interface, intermixing/diffusion behavior, and the electronic interface structure for different coating materials and metals are examined.

In detail, the project studies the interface formation of Pd, Cs, and Ag with SiC and pyrolytic carbon. Using SiC single crystals and highly-ordered pyrolytic carbon (HOPG) as substrates, interfaces are prepared under controlled conditions in an ultra-high vacuum environment and are ...


Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix, Kenneth Czerwinski Jan 2008

Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix, Kenneth Czerwinski

Fuels Campaign (TRP)

This project will examine inert fuels containing ZrO2 and MgO as the inert matrix. Ceramics with this inert matrix, Ce, U and eventually Pu will be synthesized and examined. While the Advanced Fuel Cycle Initiative focus is on inert fuels with Pu as the fissile component, this task will perform initial laboratory experiments with Ce and U. The initial work with Ce will be performed early in the project with results used as a basis for U studies. Reactor physics calculations will be used to examine suitable quantities of burnable poisons from the candidate elements Gd, Er, or Hf ...


Interaction Between Metal Fission Products And Triso Coating Materials, Clemens Heske Jan 2007

Interaction Between Metal Fission Products And Triso Coating Materials, Clemens Heske

Fuels Campaign (TRP)

This project focuses on the chemical bonding and interface formation of metal fission products with the coating materials used in tri-isotropic (TRISO) fuel particles for gas-cooled reactors. By combining surface- and bulk-sensitive spectroscopic methods, intermediate chemical phases at the interface, intermixing/ diffusion behavior, and the electronic interface structure as a function of material (metal and coating materials) and temperature are examined.

In the past year, emphasis was placed on a detailed analysis and description of the Cs/SiC interface formation process.


Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix, Kenneth Czerwinski Jan 2007

Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix, Kenneth Czerwinski

Fuels Campaign (TRP)

This project will examine inert fuels containing ZrO2 and MgO as the inert matrix. Ceramics with this inert matrix, Ce, U and eventually Pu will be synthesized and examined. While the Advanced Fuel Cycle Initiative focus is on inert fuels with Pu as the fissile component, this task will perform initial laboratory experiments with Ce and U. The initial work with Ce will be performed early in the project with results used as a basis for U studies. Reactor physics calculations will be used to examine suitable quantities of burnable poisons from the candidate elements Gd, Er, or Hf ...


Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix: Quarterly Report, January 2006 To March 2006, Kiel Steven Holliday, Thomas Hartmann, Kenneth Czerwinski Mar 2006

Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix: Quarterly Report, January 2006 To March 2006, Kiel Steven Holliday, Thomas Hartmann, Kenneth Czerwinski

Fuels Campaign (TRP)

This project will examine inert matrix fuels containing ZrO2 and MgO as the inert matrix, with the relative amount of MgO varied from 30% to 70% in ZrO2. Reactor physics calculations will be used to examine suitable quantities of burnable poisons from the candidate elements Gd, Er, or Hf with reactor grade Pu providing the fissile component, with up to 10% of 239Pu. Ceramics will be synthesized and characterized based on the reactor physics results. The solubility of the fuel ceramics, in reactor conditions, reprocessing conditions, and repository conditions, will be investigated in a manner to provide ...


Interaction Between Metal Fission Products And Triso Coating Materials: A Study Of Chemical Bonding And Interdiffusion: 1st Quarterly Report, 2006, Clemens Heske Jan 2006

Interaction Between Metal Fission Products And Triso Coating Materials: A Study Of Chemical Bonding And Interdiffusion: 1st Quarterly Report, 2006, Clemens Heske

Fuels Campaign (TRP)

This project is devoted to an in-depth study of the chemical and electronic impact of metal fission products on the coating layers in TRISO nuclear fuel. In particular, there is a focus on the investigation of Pd, Cs, and Ag and their interface formation with SiC and carbon-based substrates. A variety of surface and near-surface bulk sensitive probes that investigate the occupied and unoccupied electronic states of the substrate and the metal overlayer have been utilized. By a controlled and stepwise deposition of the metal overlayer, it is possible to gain substantial insight into the formation of interfaces and their ...


Interaction Between Metal Fission Products And Triso Coating Materials, Clemens Heske Jan 2006

Interaction Between Metal Fission Products And Triso Coating Materials, Clemens Heske

Fuels Campaign (TRP)

In this project the chemical bonding and interface formation of metal fission products with the coating materials used in TRISO fuel particles is investigated. The interface formation of Pd, Cs, and Ag with SiC and pyrolytic carbon is studied in detail. Using the SiC single crystals and TRISO coating materials as substrates, interfaces are prepared under controlled conditions in an ultra-high vacuum environment and are studied with a photoelectron spectroscopy, Auger electron spectroscopy, Inverse Photoemission, X-ray emission spectroscopy, and X-ray absorption spectroscopy. Recent additions to the experimental approach include microscopic techniques (Transmission Electron Microscopy, Scanning Tunneling Microscopy, Atomic Force Microscopy ...


Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix, Kenneth Czerwinski Jan 2006

Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix, Kenneth Czerwinski

Fuels Campaign (TRP)

This project examines inert fuels containing ZrO2 and MgO as the inert matrix, with the relative amount of MgO varied from 30% to 70% in ZrO2. Reactor physics calculations are used to examine suitable quantities of burnable poisons from the candidate elements Gd, Er, or Hf with reactor grade Pu providing the fissile component, with up to 10% of 239Pu. Ceramics are synthesized and characterized based on the reactor physics results. The solubility of the fuel ceramics, in reactor conditions, reprocessing conditions, and repository conditions, are investigated in a manner to provide thermodynamic data necessary for modeling ...


Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix: Quarterly Report, April 2005 To June 2005, Earl Wolfram, Thomas Hartmann, Kenneth Czerwinski Jun 2005

Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix: Quarterly Report, April 2005 To June 2005, Earl Wolfram, Thomas Hartmann, Kenneth Czerwinski

Fuels Campaign (TRP)

This project will examine inert matrix fuels containing ZrO2 and MgO as the inert matrix, with the relative amount of MgO varied from 30% to 70% in ZrO2. Reactor physics calculations will be used to examine suitable quantities of burnable poisons from the candidate elements Gd, Er, or Hf with reactor grade Pu providing the fissile component, with up to 10 % of 239Pu. Ceramics will be synthesized and characterized based on the reactor physics results. The solubility the fuel ceramics, in reactor conditions, reprocessing conditions, and repository conditions, will be investigated in a manner to provide thermodynamic ...


Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix: Quarterly Report, January 2005 To March 2005, Earl Wolfram, Thomas Hartmann, Kenneth Czerwinski Mar 2005

Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix: Quarterly Report, January 2005 To March 2005, Earl Wolfram, Thomas Hartmann, Kenneth Czerwinski

Fuels Campaign (TRP)

This project will examine inert matrix fuels containing ZrO2 and MgO as the inert matrix, with the relative amount of MgO varied from 30% to 70% in ZrO2. Reactor physics calculations will be used to examine suitable quantities of burnable poisons from the candidate elements Gd, Er, or Hf with reactor grade Pu providing the fissile component, with up to 10% of 239Pu. Ceramics will be synthesized and characterized based on the reactor physics results. The solubility the fuel ceramics, in reactor conditions, reprocessing conditions, and repository conditions, will be investigated in a manner to provide thermodynamic ...


Interaction Between Metal Fission Products And Triso Coating Materials: A Study Of Chemical Bonding And Interdiffusion: 2nd Quarter Report, 2005, Clemens Heske Jan 2005

Interaction Between Metal Fission Products And Triso Coating Materials: A Study Of Chemical Bonding And Interdiffusion: 2nd Quarter Report, 2005, Clemens Heske

Fuels Campaign (TRP)

The goal of our project is to investigate interface corrosion processes in TRISO nuclear fuel particles. For this purpose, we are undertaking a detailed study of the interface formation between potential candidates for metallic fission products (Pd, Ag, and Cs), likely to diffuse from the kernel of the TRISO particles, with the TRISO coating layers. As a starting point, we are investigating the Pd/SiC interface and will extend our studies to Ag/SiC during our current summer research campaign. The experimental approach comprises the preparation of metal/SiC interfaces in-situ in our ultra-high vacuum system by electron-beam deposition. In ...


Interaction Between Metal Fission Products And Triso Coating Materials, Clemens Heske Jan 2005

Interaction Between Metal Fission Products And Triso Coating Materials, Clemens Heske

Fuels Campaign (TRP)

The goal of this project is to elucidate the chemical bonding and interface formation of metal fission products with the coating materials used in state-of-the-art TRISO fuel particles. Particular emphasis is placed on an analysis of intermediate chemical phases at the interface, the intermixing/diffusion behavior, and the electronic interface structure as a function of material choice (metal and coating materials), temperature, and external stress. Furthermore, the chemical state of some of the metal fission products will be assessed.

This project studies the interface formation of Pd, Ag, and Cs with SiC and pyrolytic carbon. Using the TRISO coating materials ...


Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix, Kenneth Czerwinski Jan 2005

Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix, Kenneth Czerwinski

Fuels Campaign (TRP)

This project examines inert fuels containing ZrO2 and MgO as the inert matrix, with the relative amount of MgO varied from 30% to 70% in ZrO2. Reactor physics calculations are used to examine suitable quantities of burnable poisons from the candidate elements Gd, Er, or Hf with reactor grade Pu providing the fissile component, with up to 10% of 239Pu. Ceramics are synthesized and characterized based on the reactor physics results. The solubility of the fuel ceramics, in reactor conditions, reprocessing conditions, and repository conditions, are investigated in a manner to provide thermodynamic data necessary for modeling ...


Interaction Between Metal Fission Products And Triso Coating Materials: A Study Of Chemical Bonding And Interdiffusion: 4th Quarter Report, 2004, Clemens Heske Jan 2004

Interaction Between Metal Fission Products And Triso Coating Materials: A Study Of Chemical Bonding And Interdiffusion: 4th Quarter Report, 2004, Clemens Heske

Fuels Campaign (TRP)

The goal of this project, which started in May 2004, is to elucidate the chemical bonding and interface formation of metal fission products with the coating materials used in state-of-the-art TRISO fuel particles. Particular emphasis is placed on an analysis of intermediate chemical phases at the interface, the intermixing/diffusion behavior, and the electronic interface structure as a function of material choice (metal and coating materials), temperature, and external stress. In detail, this project is devoted to studying the interface formation of Pd, Ag, and Cs with SiC and pyrolytic carbon. In order to study the properties of the relevant ...


Interaction Between Metal Fission Products And Triso Coating Materials: A Study Of Chemical Bonding And Interdiffusion, Clemens Heske Jan 2004

Interaction Between Metal Fission Products And Triso Coating Materials: A Study Of Chemical Bonding And Interdiffusion, Clemens Heske

Fuels Campaign (TRP)

The goal of this project is to elucidate the chemical bonding and interface formation of metal fission products with the coating materials used in state-of-the-art TRISO fuel particles. Particular emphasis is placed on an analysis of intermediate chemical phases at the interface, the intermixing/diffusion behavior, and the electronic interface structure as a function of material choice (metal and coating materials), temperature, and external stress. Furthermore, we intend to assess the chemical state of some of the metal fission products. The findings are expected to give valuable information about failure mechanisms of TRISO particles and fission product transport. Secondly, through ...


Interaction Between Metal Fission Products And Triso Coating Materials: A Study Of Chemical Bonding And Interdiffusion: 3rd Quarter Report, 2004, Clemens Heske Jan 2004

Interaction Between Metal Fission Products And Triso Coating Materials: A Study Of Chemical Bonding And Interdiffusion: 3rd Quarter Report, 2004, Clemens Heske

Fuels Campaign (TRP)

The goal of this project, which started in May 2004, is to elucidate the chemical bonding and interface formation of metal fission products with the coating materials used in state-of-the-art TRISO fuel particles. Particular emphasis is placed on an analysis of intermediate chemical phases at the interface, the intermixing/diffusion behavior, and the electronic interface structure as a function of material choice (metal and coating materials), temperature, and external stress.


In detail, this project is devoted to studying the interface formation of Pd, Ag, and Cs with SiC and pyrolytic carbon. Using the TRISO coating materials and single crystal references ...


Design And Analysis For Melt Casting Metallic Fuel Pins Incorporating Volatile Actinides: Quarterly Progress Report 5/16/03- 8/15/03, Yitung Chen, Randy Clarksean, Darrell Pepper Aug 2003

Design And Analysis For Melt Casting Metallic Fuel Pins Incorporating Volatile Actinides: Quarterly Progress Report 5/16/03- 8/15/03, Yitung Chen, Randy Clarksean, Darrell Pepper

Fuels Campaign (TRP)

The analysis of mold filling and solidification continues with progress being made for the consideration of these two features within one model. Analysis of the induction heating process of an Induction Skull Melter (ISM) is under study. Efforts are underway to validate the modeling procedure and specific comparisons are being made to previously published work. Few detailed modeling results have been reported by other researchers, making the validations an important part of the overall modeling process. Skin heating depths, power deposition rates, and other process parameters are being evaluated for use in upcoming furnace design simulations. Efforts are beginning on ...


Design And Analysis For Melt Casting Metallic Fuel Pins Incorporating Volatile Actinides: Quarterly Progress Report 2/16/03- 5/15/03, Yitung Chen, Randy Clarksean, Darrell Pepper May 2003

Design And Analysis For Melt Casting Metallic Fuel Pins Incorporating Volatile Actinides: Quarterly Progress Report 2/16/03- 5/15/03, Yitung Chen, Randy Clarksean, Darrell Pepper

Fuels Campaign (TRP)

Progress continues on the analysis of casting and solidification of the melt into molds. Modeling results for constant pressure casting, which is more realistic, have been obtained and produce physically realistic results for flow that starts, flows, and then eventually stops as it enters the mold. Potential mass transfer modeling features (Lammuir’s law for example) are being studied to enhance the capabilities of a mass transfer in a detailed system model. Different parameters are being varied as part of a parametric study to evaluate factors that impact the flow of the melt into the molds. The ability to include ...


Design And Analysis Of A Process For Melt Casting Metallic Fuel Pins Incorporating Volatile Actinides, Yitung Chen, Darrel W. Pepper, Randy Clarksean Feb 2003

Design And Analysis Of A Process For Melt Casting Metallic Fuel Pins Incorporating Volatile Actinides, Yitung Chen, Darrel W. Pepper, Randy Clarksean

Fuels Campaign (TRP)

UNLV has developed and will continue to develop process models for the analysis of melt casting processes. This work will continue to be performed under the guidance of Argonne National Laboratory (ANL) engineers to insure that their knowledge and experience benefits the project. The research to be conducted during year three will center on performing detailed analyses on a conceptual design of an inductively heated skull-crucible casting furnace. Processing conditions will be analyzed, basic models utilized, and detailed heat and mass transfer models will be developed to analyze the most promising processes. The goal of this third year is to ...


Design And Analysis For Melt Casting Metallic Fuel Pins Incorporating Volatile Actinides: Quarterly Progress Report 5/16/02- 8/15/02, Yitung Chen, Randy Clarksean, Darrell Pepper Aug 2002

Design And Analysis For Melt Casting Metallic Fuel Pins Incorporating Volatile Actinides: Quarterly Progress Report 5/16/02- 8/15/02, Yitung Chen, Randy Clarksean, Darrell Pepper

Fuels Campaign (TRP)

An important aspect of the Advanced Accelerator Applications (AAA) program is the development of a casting process by which volatile actinide element (i.e., americium) can be incorporated into metallic alloy fuel pins. The traditional metal fuel casting process uses an inductively heated crucible.

This process works well for the fabrication of metal fuel pins traditionally composed of alloys of uranium and plutonium, but does not work well when highly volatile actinides are included in the melt. The problem occurs both during the extended time period required to superheat the alloy melt as well as when the chamber must be ...


Design And Analysis Of A Process For Melt Casting Metallic Fuel Pins Incorporating Volatile Actinides, Yitung Chen, Darrell Pepper, Randy Clarksean Apr 2002

Design And Analysis Of A Process For Melt Casting Metallic Fuel Pins Incorporating Volatile Actinides, Yitung Chen, Darrell Pepper, Randy Clarksean

Fuels Campaign (TRP)

UNLV has developed and will continue to develop process models for the analysis of melt casting processes. This work will continue to be performed under the guidance of Argonne National Laboratory (ANL) engineers to ensure that their knowledge and experience benefits the project. The research to be conducted during the second year will center on performing detailed analyses on a conceptual design of an inductively heated skull-crucible casting furnace. Processing conditions will be analyzed, basic models utilized, and detailed heat and mass transfer models will be developed to analyze the most promising processes. The goal of this second year is ...


Design And Analysis For Melt Casting Metallic Fuel Pins Incorporating Volatile Actinides: Quarterly Progress Report 11/16/01- 2/15/02, Yitung Chen, Randy Clarksean, Darrell Pepper Feb 2002

Design And Analysis For Melt Casting Metallic Fuel Pins Incorporating Volatile Actinides: Quarterly Progress Report 11/16/01- 2/15/02, Yitung Chen, Randy Clarksean, Darrell Pepper

Fuels Campaign (TRP)

An important aspect of the Advanced Accelerator Applications (AAA) program is the development of a casting process by which volatile actinide element (i.e., americium) can be incorporated into metallic alloy fuel pins. The traditional metal fuel casting process uses an inductively heated crucible.

This process works well for the fabrication of metal fuel pins traditionally composed of alloys of uranium and plutonium, but does not work well when highly volatile actinides are included in the melt. The problem occurs both during the extended time period required to superheat the alloy melt as well as when the chamber must be ...