Open Access. Powered by Scholars. Published by Universities.®

Nuclear Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Nuclear Engineering

Experimental Study Of Droplet Capable Conductivity Probe, Yikuan Yan Oct 2014

Experimental Study Of Droplet Capable Conductivity Probe, Yikuan Yan

Open Access Theses

This research focus on experimentally studying the performance of the newly designed Droplet Capable Conductivity Probe (DCCP). ^ A literature review is performed to illustrate the development of current two-fluid model and interfacial area transport equation. Previous conductivity probe instrumentation is also reviewed. The limitations of current conductivity probe design are described and the necessity of developing DCCP is illustrated. ^ The concept of DCCP-2 and DCCP-4 are introduced and experiments are performed to benchmark the capability of DCCP-4.


Correlating Grain Size To Radiation Damage Tolerance Of Tungsten Materials Exposed To Relevant Fusion Conditions, Sean Robert Gonderman Jul 2014

Correlating Grain Size To Radiation Damage Tolerance Of Tungsten Materials Exposed To Relevant Fusion Conditions, Sean Robert Gonderman

Open Access Theses

Tungsten remains a leading candidate for plasma facing component (PFC) in future fusion devices. This is in large part due to its strong thermal and mechanical properties. The ITER project has already chosen to use an all tungsten divertor. Despite having a high melting temperature and low erosion rate, tungsten faces a large variety of issues when subject to fusion like conditions. These include embrittlement, melting, and extreme morphology change (growth of fuzz nanostructure). The work presented here investigates mechanisms that drive surface morphology change in tungsten materials exposed to fusion relevant plasmas. Specifically, tungsten materials of different grain sizes …


Drift-Flux Correlation Development For Two-Phase Flow In Rod Bundles, Collin M. Clark Apr 2014

Drift-Flux Correlation Development For Two-Phase Flow In Rod Bundles, Collin M. Clark

Open Access Theses

A rod bundle drift-flux correlation is developed with intended application across a wide range of two-phase flow conditions. Special consideration is made for fluid flow mechanisms at low liquid velocity and low pressure conditions. In these instances, gravitational forces from the density difference of the associated fluid phases are more significant. Secondary flow patterns may develop as a result and a drift-flux correlation would need to make appropriate adjustments. Earlier correlations may have increased error at these conditions if they have been formulated with respect to relatively higher pressures or flow rates. In the present work, area-average void fraction data …