Open Access. Powered by Scholars. Published by Universities.®

Nuclear Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Theses/Dissertations

2011

Discipline
Institution
Keyword
Publication

Articles 1 - 27 of 27

Full-Text Articles in Nuclear Engineering

Robust Multichannel Functional-Data-Analysis Methods For Data Recovery In Complex Systems, Jian Sun Dec 2011

Robust Multichannel Functional-Data-Analysis Methods For Data Recovery In Complex Systems, Jian Sun

Doctoral Dissertations

In recent years, Condition Monitoring (CM), which can be performed via several sensor channels, has been recognized as an effective paradigm for failure prevention of operational equipment or processes. However, the complexity caused by asynchronous data collection with different and/or time-varying sampling/transmission rates has long been a hindrance in the effective use of multichannel data in constructing empirical models. The problem becomes more challenging when sensor readings are incomplete. Traditional sensor data recovery techniques are often prohibited in asynchronous CM environments, not to mention sparse datasets. The proposed Functional Principal Component Analysis (FPCA) methodologies, e.g., nonparametric FPC model and semi-parametric …


Thermocouple Temperature Measurements For Twin Jet Thermal Mixing, Spero Michael Peters Dec 2011

Thermocouple Temperature Measurements For Twin Jet Thermal Mixing, Spero Michael Peters

Masters Theses

Thermocouples are commonly used devices for temperature measurement. This study concerns the implementation of thermocouples to collect thermal mixing data in an environment in which two parallel water jets are mixing. The measurements are taken with the purpose of modeling the jet mixing region so that Computational Fluid Dynamics (CFD) models can be validated against the test data. This thesis covers the design, construction, implementation and evaluation of a thermocouple system for immersion in a water environment to measure the thermal mixing of twin jets.

The measurement system being used is a thermocouple rake whose design and fabrication is covered. …


Spectroscopic Methods Of Process Monitoring For Safeguards Of Used Nuclear Fuel Separations, Jamie Lee Warburton Dec 2011

Spectroscopic Methods Of Process Monitoring For Safeguards Of Used Nuclear Fuel Separations, Jamie Lee Warburton

UNLV Theses, Dissertations, Professional Papers, and Capstones

To support the demonstration of a more proliferation-resistant nuclear fuel processing plant, techniques and instrumentation to allow the real-time, online determination of special nuclear material concentrations in-process must be developed. An ideal materials accountability technique for proliferation resistance should provide nondestructive, realtime, on-line information of metal and ligand concentrations in separations streams without perturbing the process. UV-Visible spectroscopy can be adapted for this precise purpose in solvent extraction-based separations.

The primary goal of this project is to understand fundamental URanium EXtraction (UREX) and Plutonium-URanium EXtraction (PUREX) reprocessing chemistry and corresponding UV-Visible spectroscopy for application in process monitoring for safeguards. By …


Quantification Of Stochastic Uncertainty Propagation For Monte Carlo Depletion Methods In Reactor Analysis, Quentin Thomas Newell Dec 2011

Quantification Of Stochastic Uncertainty Propagation For Monte Carlo Depletion Methods In Reactor Analysis, Quentin Thomas Newell

UNLV Theses, Dissertations, Professional Papers, and Capstones

The Monte Carlo method provides powerful geometric modeling capabilities for large problem domains in 3-D; therefore, the Monte Carlo method is becoming popular for 3-D fuel depletion analyses to compute quantities of interest in spent nuclear fuel including isotopic compositions. The Monte Carlo approach has not been fully embraced due to unresolved issues concerning the effect of Monte Carlo uncertainties on the predicted results.

Use of the Monte Carlo method to solve the neutron transport equation introduces stochastic uncertainty in the computed fluxes. These fluxes are used to collapse cross sections, estimate power distributions, and deplete the fuel within depletion …


Spatially-Dependent Reactor Kinetics And Supporting Physics Validation Studies At The High Flux Isotope Reactor, David Chandler Aug 2011

Spatially-Dependent Reactor Kinetics And Supporting Physics Validation Studies At The High Flux Isotope Reactor, David Chandler

Doctoral Dissertations

The computational ability to accurately predict the dynamic behavior of a nuclear reactor core in response to reactivity-induced perturbations is an important subject in the field of reactor physics. Space-time and point kinetics methodologies were developed for the purpose of studying the transient-induced behavior of the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor’s (HFIR) compact core. The space-time simulations employed the three-group neutron diffusion equations, which were solved via the COMSOL partial differential equation coefficient application mode. The point kinetics equations were solved with the PARET code and the COMSOL ordinary differential equation application mode. The basic nuclear …


Discovery And Development Of Rare Earth Activated Binary Metal Halide Scintillators For Next Generation Radiation Detectors, Kan Yang Aug 2011

Discovery And Development Of Rare Earth Activated Binary Metal Halide Scintillators For Next Generation Radiation Detectors, Kan Yang

Doctoral Dissertations

This work focuses on discovery and development of novel binary halide scintillation materials for radiation detection applications. A complete laboratory for raw materials handling, ampoule preparation, material rapid synthesis screening, single crystal growth, sample cutting, polishing and packaging of hygroscopic halide scintillation materials has been established. Ce3+ and Eu2+ activated scintillators in three binary systems: Alkali Halide – Rare Earth Halide (AX–REX3), Alkali Halide – Alkaline Earth Halide (AX–AEX2) and Alkalin Earth Halide – Rare Earth Halide (AEX2–REX3) were systematically studied. Candidates for new scintillation materials in the three systems …


Development Of A Safeguards Monitoring System For Special Nuclear Facilities, James Joseph Henkel Aug 2011

Development Of A Safeguards Monitoring System For Special Nuclear Facilities, James Joseph Henkel

Doctoral Dissertations

Two important issues related to nuclear materials safeguards are the continuous monitoring of nuclear processing facilities to verify that undeclared uranium is not processed or enriched and to verify that declared uranium is accounted for. The International Atomic Energy Agency (IAEA) is tasked with ensuring special nuclear facilities are operating as declared and that proper material safeguards have been followed. Traditional safeguards measures have relied on IAEA personnel inspecting each facility and verifying material with authenticated instrumentation.

In newer facilities most plant instrumentation data are collected electronically and stored in a central computer. Facilities collect this information for a variety …


Development Of A Prognostic Method For The Production Of Undeclared Enriched Uranium, David Alan Hooper Aug 2011

Development Of A Prognostic Method For The Production Of Undeclared Enriched Uranium, David Alan Hooper

Doctoral Dissertations

As global demand for nuclear energy and threats to nuclear security increase, the need for verification of the peaceful application of nuclear materials and technology also rises. In accordance with the Nuclear Nonproliferation Treaty, the International Atomic Energy Agency is tasked with verification of the declared enrichment activities of member states. Due to the increased cost of inspection and verification of a globally growing nuclear energy industry, remote process monitoring has been proposed as part of a next-generation, information-driven safeguards program. To further enhance this safeguards approach, it is proposed that process monitoring data may be used to not only …


Positron Emission Tomography (Pet) For Flow Measurement, Bi Yao Zhang Aug 2011

Positron Emission Tomography (Pet) For Flow Measurement, Bi Yao Zhang

Masters Theses

Positron Emission Tomography (PET) is frequently used for medical imaging. Maturity and flexibility of PET as an imaging technique has expanded its utility beyond the medical domain. It can be used as a tool for fluid flow studies in opaque fluids and for flow within complex geometry where conventional optical flow measurement approaches fail. This study explores the capabilities of PET as flow measurement tool suited to validation of computational fluid dynamic (CFD) predictions.

The MicroPET P4 scanner was used to image the diffusion process in flow around a rod bundle geometry similar to that found in a nuclear reactor …


A New Method For Coupling 2d And 3d Deterministic And Stochastic Radiation Transport Calculations, Joel Aaron Kulesza Aug 2011

A New Method For Coupling 2d And 3d Deterministic And Stochastic Radiation Transport Calculations, Joel Aaron Kulesza

Masters Theses

The objective of this body of work was to produce a code system capable of processing boundary angular flux data from discrete ordinates calculations in 2D and 3D Cartesian and cylindrical geometries into cumulative probability density functions that can be used with a Monte Carlo radiation transport code to define neutron and photon initial positions, directions, and energies. In order to accomplish this goal, the DISCO (DetermInistic-Stochastic Coupling Operation) code was created to interface between the DORT and TORT deterministic radiation transport codes and the MCNP stochastic radiation transport code. DISCO introduces new methods to use the boundary angular flux …


A Modular Design For Nuclear Battery Technology, Randy Lao Jun 2011

A Modular Design For Nuclear Battery Technology, Randy Lao

Physics

This paper is an exploration of the physics and technology behind the development and on-going research of nuclear batteries. This includes the topics of isotope radiation suitable for such a device as well as the components necessary to utilize the energy of natural decay, such as solid and liquid semiconductors. Most importantly for public use, the battery requires a safe containment system while allowing convenient modularity. An efficiency and total output comparison will be made with standard button cell and dry cell batteries. Also, a proposal is made for the design of an enclosure to contain radioactive materials. The safe …


Dynamic Modeling, Sensor Placement Design, And Fault Diagnosis Of Nuclear Desalination Systems, Fan Li May 2011

Dynamic Modeling, Sensor Placement Design, And Fault Diagnosis Of Nuclear Desalination Systems, Fan Li

Doctoral Dissertations

Fault diagnosis of sensors, devices, and equipment is an important topic in the nuclear industry for effective and continuous operation of nuclear power plants. All the fault diagnostic approaches depend critically on the sensors that measure important process variables. Whenever a process encounters a fault, the effect of the fault is propagated to some or all the process variables. The ability of the sensor network to detect and isolate failure modes and anomalous conditions is crucial for the effectiveness of a fault detection and isolation (FDI) system. However, the emphasis of most fault diagnostic approaches found in the literature is …


Estimates Of Linear Energy Transfer From Solar Energetic Particles In Earth's Upper Atmosphere To Human Tissue In Aluminium Aircraft, Michael Ian Hall May 2011

Estimates Of Linear Energy Transfer From Solar Energetic Particles In Earth's Upper Atmosphere To Human Tissue In Aluminium Aircraft, Michael Ian Hall

Masters Theses

Radiation from extraterrestrial sources is a concern for the safety of passengers and crew in high altitude aircraft. Cosmic radiation and solar particles constantly bombard the atmosphere with energy. Radiation levels from these sources can vary considerably depending on solar activity cycles and energetic particle events such as solar flares. In order to predict the effects of such events the nature of the radiation spectrum must be characterized, and the individual effects of each radiation type understood. The background radiation spectrum is known to good accuracy and prediction of radiation levels due to specific solar events is currently under investigation. …


Resonance Testing For Fault Detection Of Steam Generator Heat Transfer Tubing Walls, Michael C. Shannon, John Howington, Jesus Sanchez, Colin Sandidge, Jeremy Townsend, Keith Welsh May 2011

Resonance Testing For Fault Detection Of Steam Generator Heat Transfer Tubing Walls, Michael C. Shannon, John Howington, Jesus Sanchez, Colin Sandidge, Jeremy Townsend, Keith Welsh

Chancellor’s Honors Program Projects

No abstract provided.


Simulation And Validation Of Two-Component Flow In A Void Recirculation System, Oscar Eduardo Daza May 2011

Simulation And Validation Of Two-Component Flow In A Void Recirculation System, Oscar Eduardo Daza

Master's Theses

Nuclear power plants rely on the Emergency Core Cooling System (ECCS) to cool down the reactor core in case of an accident. Occasionally, air is entrained into the suction piping of ECCS causing voids that decrease pumping efficiency, and consequently damage the pumps. In an attempt to minimize the amount of voids entering the suction side of the pump in ECCS, a Void Recirculation System (VRS) experiment was conducted for a proof of concept purpose. While many studies have been oriented in studying two-component flow behavior in ECCS, none of them propose a solution to minimize air entrainment. As a …


Vibration Fault Detection For Steam Generator Tubing, Brad Patrick Black, Laura Simmons, John Chapman, Jared Jennings, Jacob Johnson, Brian Paul, Kyle Woods May 2011

Vibration Fault Detection For Steam Generator Tubing, Brad Patrick Black, Laura Simmons, John Chapman, Jared Jennings, Jacob Johnson, Brian Paul, Kyle Woods

Chancellor’s Honors Program Projects

No abstract provided.


Computational Study Of Passive Neutron Albedo Reactivity (Pnar) Measurement With Fission Chambers, Sandra De La Cruz May 2011

Computational Study Of Passive Neutron Albedo Reactivity (Pnar) Measurement With Fission Chambers, Sandra De La Cruz

UNLV Theses, Dissertations, Professional Papers, and Capstones

The Passive Neutron Albedo Reactivity technique (PNAR) was used to assay used nuclear fuel as a potential method for the measurement of fissionable material in fuel assemblies. A Monte Carlo transport code (MCNPX 2.6) was used to develop simulation models to evaluate the PNAR technique. The MCNPX simulated models consisted of two 17x17 Pressurized Water Reactor (PWR) used fuel assemblies; one with an initial 3 wt% uranium-235*, cooled for 20 years and second with an initial 4 wt% uranium-235*, cooled for 5 years. Each used fuel assembly was simulated at four different burn up rates of 15, 30, 45, and …


Improved Analytical Analysis Of A Pressurized Water Reactor Secondary Loop, Megan J. Holba Apr 2011

Improved Analytical Analysis Of A Pressurized Water Reactor Secondary Loop, Megan J. Holba

All Capstone Projects

In the nuclear industry, the addition of poly-acrylic acid (PAA) as a dispersant to the secondary cooling loop in pressurized water reactors (PWRs) has been found beneficial in keeping the corroded Fe in solution. The purpose of this study is to measure the effectiveness of the addition of PAA to Braidwood Nuclear Power Station and other plants, to show the benefits of PAA implementation and to evaluate the current method for Fe detection. The current analytical method for the X-Ray Fluorescence Detector has an upper detection limit of 5,000 μg Fe, however, the results frequently exceed the upper limit. In …


An Integrated Circuit/Microsystem/Nano-Enhanced Four Species Radiation Sensor For Inexpensive Fissionable Material Detection, Randy Paul Waguespack Apr 2011

An Integrated Circuit/Microsystem/Nano-Enhanced Four Species Radiation Sensor For Inexpensive Fissionable Material Detection, Randy Paul Waguespack

Doctoral Dissertations

Small scale radiation detectors sensitive to alpha, beta, electromagnetic, neutron radiation are needed to combat the threat of nuclear terrorism and maintain national security. There are many types of radiation detectors on the market, and the type of detector chosen is usually determined by the type of particle to be detected. In the case of fissionable material, an ideal detector needs to detect all four types of radiation, which is not the focus of many detectors. For fissionable materials, the two main types of radiation that must be detected are gamma rays and neutrons. Our detector uses a glass or …


Neutron Detection Using Gadolinium-Based Diodes, Benjamin R. Thomas Mar 2011

Neutron Detection Using Gadolinium-Based Diodes, Benjamin R. Thomas

Theses and Dissertations

P-n heterojunction diodes consisting of a thin n-type layer of Gd2O3 deposited on both p-type Si and p-type 4H SiC substrates were explored as possible solid-state neutron detectors. 79 keV internal conversion electrons from the de-excitation of the meta-stable Gd-158 nucleus can create ionization in the depletion region of the reverse-biased diodes resulting in a detectable signal. The diodes were modeled with Davinci software to determine the feasibility of signal detection above the reverse-bias leakage current. A CASINO simulation showed that less than one percent of the internal conversion electrons deposit their full energy within the achievable …


A Study Into The Use Of Microprocessor Relays For Motor Operated Valve (Mov) Electrical Protection In Nuclear Power Plants, James Andrew Tuccillo Mar 2011

A Study Into The Use Of Microprocessor Relays For Motor Operated Valve (Mov) Electrical Protection In Nuclear Power Plants, James Andrew Tuccillo

Master's Theses

Motor Operated Valves (MOVs) are electro-mechanical components used to isolate, divert, or introduce fluid flow. The use of microprocessor relays for actuator motor electrical protection within nuclear power plants is the focus of this thesis and is implemented by providing a new and enhanced protection scheme that provides the adequate conservatism necessary to ensure valve operation while still maintaining electrical safety and continued operational availability. The comprehensive protection scheme is designed around an advanced microprocessor relay that has the ability to simulate the thermal overload conditions of a motor operating into a destructive thermal region. Through laboratory testing, the validity …


Production And Characterization Of Supported Palladium Nanoparticles On Multiwalled Carbon Nanotubes By Gamma Irradiation, Jessika Viviana Rojas Marin Jan 2011

Production And Characterization Of Supported Palladium Nanoparticles On Multiwalled Carbon Nanotubes By Gamma Irradiation, Jessika Viviana Rojas Marin

Masters Theses

"Carbon nanotubes are being studied for a variety of applications due to their outstanding mechanical, chemical, electrical, and optical properties that make them interesting in different areas. Nowadays, different methods to modify the structure of the nanotubes are being developed in order to expand the application fields of such materials. In this work, palladium nanoparticles were directly produced and supported on multi-walled carbon nanotubes (MWCNT) by gamma irradiation. A solution with a 2:1 water-isopropanol ratio was prepared and mixed with palladium chloride as precursor of palladium ions. Radiolysis of water produces certain species that reduce the ions down to a …


Application Of The Tdma Technique Toward The Size And Charge Distribution Measurement Of Graphite, Gold, Palladium, And Silver Aerosols, Matthew Paul Simones Jan 2011

Application Of The Tdma Technique Toward The Size And Charge Distribution Measurement Of Graphite, Gold, Palladium, And Silver Aerosols, Matthew Paul Simones

All Graduate Theses, Dissertations, and Other Capstone Projects

The knowledge of charge distributions among aerosol particles has been an important topic for many years because of the strong electrostatic interactions which can greatly influence aerosol transport and evolution. Theoretical models have been developed although experimental verification has been limited because of the difficulty in measuring charged aerosols. Recently a method utilizing a tandem differential mobility analyzer (TDMA) has been shown to be applicable toward measuring both the size and charge distributions of nanosized combustion aerosols. The goal of this work is on further exploration of this method toward the measurement of non-combustion aerosols and in particular those associated …


Upgrade And Simulation Of The Subcritical Assembly At Missouri University Of Science And Technology, Lucas Powelson Tucker Jan 2011

Upgrade And Simulation Of The Subcritical Assembly At Missouri University Of Science And Technology, Lucas Powelson Tucker

Masters Theses

"The Missouri University of Science and Technology Subcritical Assembly (S&TSub) was brought back into service and upgraded with a new neutron detection system and internet access. Before the upgrade neutron counting was only possible in one location. Using a movable detection system housed in acrylic tubes measurements can now be taken in any empty fuel location and at any height within the tube, making three dimensional flux mapping a possibility. By connecting the new detection system to a Canberra Lynx Digital Signal Analyzer, remote users can have limited data collecting capabilities. To further enhance the potential of the facility, an …


Contrast Enhancement Of Digital Mammography Based On Multi-Scale Analysis, Muhammad Imran Khan Abir Jan 2011

Contrast Enhancement Of Digital Mammography Based On Multi-Scale Analysis, Muhammad Imran Khan Abir

Masters Theses

"A contrast enhancement algorithm is developed for digital mammograms aiming to assist radiologists in discerning early breast cancer easily. The algorithm is based on a Laplacian pyramid framework image processing technique. The mammogram is decomposed into three frequency sub-bands, low, mid, and high frequency sub-band images. The lower sub-band image contains very fine details and higher level contains coarser features. In this method contrast enhancement is achieved from high and mid sub-bands by decomposing the image based on multi-scale Laplacian pyramid and enhance contrast by image processing. Several mapping functions are applied on sub-band images based on experimental analysis. After …


Simulation Of The Field Electron Emission Characteristics Of A Flat Panel X-Ray Source, Chrystian Mauricio Posada ArbeláEz Jan 2011

Simulation Of The Field Electron Emission Characteristics Of A Flat Panel X-Ray Source, Chrystian Mauricio Posada ArbeláEz

Masters Theses

"A distributed flat panel x-ray source is designed as an alternative for medical and industrial imaging fields. The distributed x-ray source corresponds to a two dimensional array of micro (~100μm) x-ray cells similar in format to a field emission display. In this paper the electron field emission characteristics of a single of the proposed micro-sized x-ray cells are simulated. The field electron emission from the CNTs-based cathode is simulated using the Particle-In-Cell code OOPIC Pro. The electron source is simulated as a triode structure, composed of an emitting cathode, extracting grid and anode. The possibility of using focusing lenses to …


Density Determination Of Tristructural-Isotropic Nuclear Fuel Using Multiple Projection X-Ray Radiography, Frank Angelo Strantz Jan 2011

Density Determination Of Tristructural-Isotropic Nuclear Fuel Using Multiple Projection X-Ray Radiography, Frank Angelo Strantz

Masters Theses

"Effective methods of enhancing the safety and efficiency of the nuclear power industry embolden its perception and economic viability. Fuel reliability is an essential component of the prosperity of next generation high temperature reactors; as such, an equally dependable quality control method is mandatory. Tristructural-isotropic (TRISO) fuel, the fuel developed for use in these reactors, utilizes density measurement of coating layers as a standard for quality control. Common methods of measuring density, such as sink-float and ceramography are destructive, and as such generate radioactive waste, take a relatively long time to prepare samples, rely on a low sampling rate to …