Open Access. Powered by Scholars. Published by Universities.®

Nuclear Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Nuclear Engineering

Cellular Automaton For Simulation Of Oxide Layer Growth Influenced By Chromium Concentration Of Structure Material, Kuan-Che Lan, Yitung Chen, Ge-Ping Yu, Tzu-Chen Hung Apr 2012

Cellular Automaton For Simulation Of Oxide Layer Growth Influenced By Chromium Concentration Of Structure Material, Kuan-Che Lan, Yitung Chen, Ge-Ping Yu, Tzu-Chen Hung

College of Engineering: Graduate Celebration Programs

Chromium, an important alloying element, has been added in ferrous and nickel based alloy such as stainless steels and Inconel alloy to improve the corrosion resistance. High corrosion resistance of structural materials in extremely high working temperature is one crucial R&D objective of Gen IV nuclear power plants which propose to raise the thermal efficiency via high working temperature. A cellular automaton (CA) model based on the stochastic approach was proposed to simulate the process of oxidation and corrosion of structural material in flowing fluid. The relation of chromium concentration against oxide layer thickness during a specific period was found. …


Cracking Of Martensitic Alloy Ep-823 Under Controlled Potential, Ajit K. Roy, M. K. Hossain Jan 2006

Cracking Of Martensitic Alloy Ep-823 Under Controlled Potential, Ajit K. Roy, M. K. Hossain

Mechanical Engineering Faculty Research

The susceptibility of martensitic Alloy EP-823 to stress corrosion cracking was evaluated with and without an applied cathodic potential using the slow-strain-rate (SSR) testing technique. The magnitude of the applied potential was based on the corrosion potential determined by cyclic polarization. The cracking susceptibility in an acidic environment at different temperatures was expressed in terms of the true failure stress (ơf), time to failure (TTF), and ductility parameters, including percent elongation (%El) and percent reduction in area (%RA). The data indicate that the magnitudes of ơr, TTF, %El, and %RA were reduced due to cathodic charging. …


Residual Stress Characterization In Structural Materials By Destructive And Nondestructive Techniques, Ajit K. Roy, Anand Venkatesh, Vikram Marthandam, Satish Dronavalli, Douglas P. Wells, Ronald Rogge Apr 2005

Residual Stress Characterization In Structural Materials By Destructive And Nondestructive Techniques, Ajit K. Roy, Anand Venkatesh, Vikram Marthandam, Satish Dronavalli, Douglas P. Wells, Ronald Rogge

Mechanical Engineering Faculty Research

Transmutation of nuclear waste is currently being considered to transform long-lived isotopes to species with relatively short half-lives and reduced radioactivity through capture and decay of minor actinides and fission products. This process is intended for geologic disposal of spent nuclear fuels for shorter durations in the proposed Yucca Mountain repository. The molten lead-bismuth-eutectic will be used as a target and coolant during transmutation, which will be contained in a subsystem vessel made from materials such as austenitic (304L) and martensitic (EP-823 and HT-9) stainless steels. The structural materials used in this vessel will be subjected to welding operations and …


Stress Corrosion Cracking And Hydrogen Embrittlement Of Martensitic Alloy Ep-823, Mohammad K. Hossain Dec 2004

Stress Corrosion Cracking And Hydrogen Embrittlement Of Martensitic Alloy Ep-823, Mohammad K. Hossain

UNLV Theses, Dissertations, Professional Papers, and Capstones

This investigation is focused on the evaluation of stress corrosion cracking (SCC), localized corrosion, and hydrogen embrittlement (HE) susceptibility of martensitic Alloy EP-823 in neutral and acidic solutions at ambient and elevated temperatures. While no failures were observed in smooth specimens in the neutral solution, failures were noticed in the 90°C acidic solution at constant-load (CL) leading to a threshold stress (O'th) of 102 ksi. The presence of a notch reduced the O'th value to 91 ksi in a similar environment. The ductility (%El and %RA), time-to-failure (TTF), and true failure stress (O'r) were gradually …


Stress Corrosion Cracking Resistance Of Martensitic Stainless Steels For Transmutation Applications, Phani P. Gudipati Dec 2004

Stress Corrosion Cracking Resistance Of Martensitic Stainless Steels For Transmutation Applications, Phani P. Gudipati

UNLV Theses, Dissertations, Professional Papers, and Capstones

The susceptibility of Alloy EP-823 to stress corrosion cracking has been evaluated using smooth and notched cylindrical specimens in neutral and acidic solutions at ambient and elevated temperatures using constant load and slow strain rate testing (SSR) techniques. C-ring and U-bend specimens have also been tested in the acidic solution. The effect of hydrogen on the cracking susceptibility has been evaluated under controlled cathodic potential. While no failures were observed with smooth specimens at constant load, the notched specimens showed failure. The SSR test results indicate that the true failure stress (o'f), time to failure and ductility parameters …


Cfd Analysis Of 3-D Thermalhydraulics Flow Effects On Wall Concentration Gradient Profiles For Lbe Loop Fittings, Narain Armbya Dec 2004

Cfd Analysis Of 3-D Thermalhydraulics Flow Effects On Wall Concentration Gradient Profiles For Lbe Loop Fittings, Narain Armbya

UNLV Theses, Dissertations, Professional Papers, and Capstones

The objective of the thesis is to study the effects of thermalhydraulics flows on the wall concentration gradient profiles in LBE loop fittings. To that end detailed models of the fittings have been constructed to study these effects. These fittings include sudden expansion, sudden contraction, t-joint and elbow. The typical flow rates chosen for these simulations are typical of design criteria chosen for the loop with Reynolds numbers expected around 200,000 and the usual axial temperature profiles which are being characterized in the DELTA loop at LANL. STAR-CD is the simulation package used to make these predictions, which include detailed …


Environmental Effects On Corrosion Properties Of Alloy 22, K. S. Raja, L. G. Mcmillion, Shantanu A. Namjoshi, Paige Russel, Raymond E. Keeler, Amy J. Smiecinski Nov 2004

Environmental Effects On Corrosion Properties Of Alloy 22, K. S. Raja, L. G. Mcmillion, Shantanu A. Namjoshi, Paige Russel, Raymond E. Keeler, Amy J. Smiecinski

Publications (YM)

During the regulatory life of the Yucca Mountain High Level Nuclear Waste (HLNW) repository the primary engineered barrier that is to prevent release of radioactive material into the environment is proposed to be a Corrosion-Resistant Material (CRM) outer shell covering the Waste Package (WP) container. The current selection for the CRM is Alloy 22 (UNS N06022), a Ni-Cr-Mo-W-Fe alloy. Alloy 22 forms a defective chromic oxide passive film which results in excellent corrosion resistance; the presence of molybdenum in Alloy 22 offers corrosion resistance in reducing environments as well as oxidizing environments.


Phase Stability And Segregation In Alloy 22 Base Metal And Weldments, Jeffrey Lacombe, Shantanu A. Namjoshi, Paige Russel, Raymond E. Keeler, Amy J. Smiecinski Oct 2004

Phase Stability And Segregation In Alloy 22 Base Metal And Weldments, Jeffrey Lacombe, Shantanu A. Namjoshi, Paige Russel, Raymond E. Keeler, Amy J. Smiecinski

Publications (YM)

The current design of the waste disposal containers relies heavily on encasement in a multi-layered container, featuring a corrosion barrier of Alloy 22, a Ni-Cr-Mo-W based alloy with excellent corrosion resistance over a wide range of conditions. The fundamental concern from the perspective of the Yucca Mountain Project, however, is the inherent uncertainty in the (very) long-term stability of the base metal and welds. Should the properties of the selected materials change over the long service life of the waste packages, it is conceivable that the desired performance characteristics (such as corrosion reistance) will become compromised, leading to premature failure …


Embrittlement And Localized Corrosion In Alloy Ht-9, Sudheer Sama Aug 2004

Embrittlement And Localized Corrosion In Alloy Ht-9, Sudheer Sama

UNLV Theses, Dissertations, Professional Papers, and Capstones

This investigation is focused on the evaluation of stress corrosion cracking (SCC), hydrogen embrittlement (HE) and localized corrosion susceptibility of Alloy HT -9 in neutral and acidic solutions at 30, 60 and 90°C. Constant-load and slow-strain-rate (SSR) testing techniques were used to evaluate the SCC and HE behavior of this alloy by using smooth and notched tensile specimens. Hydrogen effect on the cracking behavior was evaluated by applying cathodic (negative) potential to the test specimens. Localized corrosion susceptibility was evaluated by cyclic potentiodynamic polarization technique. The results of constant load SCC testing showed a threshold stress at 80% of the …


Environment-Induced Degradations In A Target Structural Material For Transmutation Applications, Ramprashad Prabhakaran Aug 2004

Environment-Induced Degradations In A Target Structural Material For Transmutation Applications, Ramprashad Prabhakaran

UNLV Theses, Dissertations, Professional Papers, and Capstones

This investigation is focused on the evaluation of stress corrosion cracking (SCC) and localized corrosion behavior of Type 422 stainless steel in aqueous environments at ambient and elevated temperature. The results of constant load SCC testing using smooth specimens showed no failure in the neutral solution but a threshold stress of 97 ksi was observed in the 90°C acidic environment. SCC testing by the slow-strain-rate test method indicate that the time-to-failure, true failure stress and ductility parameters were gradually reduced with increasing temperature, showing more pronounced effect in the acidic solution. The application of a controlled cathodic potential showed further …


Modeling, Optimization, And Flow Visualization Of Chemical Etching Process In Niobium Cavities, Sathish K. Subramanian May 2004

Modeling, Optimization, And Flow Visualization Of Chemical Etching Process In Niobium Cavities, Sathish K. Subramanian

UNLV Theses, Dissertations, Professional Papers, and Capstones

Niobium cavities are important component of the linear accelerators. Researchers have concluded that buffered chemical polishing on the inner surface of the cavity improves its performance. However the mechanism of chemical polishing is not well understood. A finite element computational fluid dynamics (CFD) model was developed to simulate the fluid flow characteristics of chemical etching process inside the cavity. The CFD model is then used to optimize the baffle design. The analysis confirmed the observation of other researchers that the iris section of the cavity received more etching than the equator regions. The baffle, which directs flow towards the walls …


Chemical Kinetics And Thermal Hydraulics Of Lead Bismuth Flow Loops, Kanthi Kiran Dasika Dec 2003

Chemical Kinetics And Thermal Hydraulics Of Lead Bismuth Flow Loops, Kanthi Kiran Dasika

UNLV Theses, Dissertations, Professional Papers, and Capstones

The objective of the thesis is to study the effect of chemical kinetics and thermal hydraulics of Lead Bismuth Eutectic (LBE) flow in the Materials Test Loop (MTL). The Materials Test Loop, also known as the Delta Loop, was built in Los Alamos National Laboratories (LANL) to obtain the experimental data for corrosion estimation and analysis. It is a well-known fact that corrosion plays an important role in the design of nuclear thermal hydraulic systems. Since the MTL is a multi-section closed system that differs in diameter from one part to another, an intensive study on the overall and regional …


Study Of Geometric Effects On Local Corrosion Rates For Lbe Loop, Chao Wu Jul 2003

Study Of Geometric Effects On Local Corrosion Rates For Lbe Loop, Chao Wu

UNLV Theses, Dissertations, Professional Papers, and Capstones

Corrosion is an extremely important issue in nuclear cooling system applications. Many scientific and engineering efforts have been contributed to the research of finding an ideal material, which has resistance to corrosive Lead Bismuth Eutectic (LBE). A Delta Loop was designed and constructed in Los Alamos National Lab (LANL) to obtain the experimental data. This loop is a multi-section closed system that differs in diameter from one part to another. As a result, an intensive study on the geometry effect is hence necessary and valuable. In this thesis, this problem was simulated by commercial software STAR-CD. Results provide a good …